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1 Introduction

Over the last decade, embedded systems have increasingly become a critical part of
our daily life, as they represent the largest consumer electronics market segment.
Due to the sensitivity and the importance of the data they manipulate, the security
of these systems reveals itself as a major concern both for industrial companies as
well as for state organizations. Physical attacks, especially fault injection attacks
introduced by Bonet et al. [4] aim to exploit the effect of a deliberate disturbance
of a system during its operation. They have been shown to require inexpensive
equipment and a short amount of time to extract secret information such as a
cryptographic key, or to bypass security checks such as PIN verifier. Fault injection
can be carried out by means of different techniques, the most common of them are:
Variation of the supply voltage, variations in the clock signal, extreme variation
of the temperature, focused white light, electromagnetic injection, X-rays and ion
beams [1].

Commonly used approaches for software-based countermeasures against fault at-
tacks are: (1) Source code approach, which consists of inserting the countermeasure
at the source code level, e.g. [6]. The downside of this approach is that the compiler
provides no assurance that the countermeasure will be preserved after compilation.
Except either disabling the compiler code optimizers, which significantly impacts
the code size and its execution speed, or inlining assembly code, which makes the
code difficult to maintain, or reinvesting a manual effort to review and rewrite the
generated assembly code. (2) The Assembly code approach consists in putting the
countermeasure at the assembly code level, e.g. [2, 7, 5]. At this level, the code lacks
semantic information, such as symbols, type information and number of available
registers, making any code transformation difficult to achieve and not without con-
siderable additional costs. Moreover, when it comes to protect a program against
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Figure 1: Internal structure of the modified compiler. Gray boxes represent modified
passes, black boxes the implemented passes

various models of fault attacks, different countermeasures are incrementally applied
regardless of the impact one can have on another. The aforementioned points explain
why security experts still manually harden the sensitive parts of an application that
need to be secured, and why the application of software countermeasures is still a
challenging and costly task in the industry area. In order to reduce design costs and
increase the confidence in secure designs, because manual insertion is error prone,
industries are strongly in demand of automated tools able to combine various pro-
tections while taking advantage of code optimization.
In this work, we investigate the use of a general purpose compiler to automatically
harden sensitive parts of a program during compilation. The question raised by this
approach is : How to implement hardening passes inside a general purpose compiler
primarily designed to produce the most optimized code possible ?

2 Compilation for security

We propose to present the changes we have made to existing LLVM passes and the
new passes we implemented in order to enable LLVM to efficiently apply two existing
protection schemes, while taking advantage of optimization passes. The protections
we considered are designed to protect against fault injection attacks that lead (1)
to skip one or several instructions (2) to divert the normal execution flow of the
program.
The first one is a tolerance scheme that extends and improve the scheme presented
by Barry et al. [3], and relies on that formally verified by Moro et al. [7]. It consists
of duplicating the instructions to tolerate instruction-skip fault attacks. Before the
duplication, all the instructions must be transformed into idempotent1 forms.
The second one implement a control-flow integrity (CFI) scheme that seeks to ensure
that the execution only passes through approved paths of the program CFG. It is
achieved using the step counter principle that consists of initializing a counter at the
beginning of each basic block, incrementing the counter after each instruction, and
checking the validity of the counter at basic block boundaries to detect a possible
control-flow corruption.

We will discuss in a general terms the difficulties that can be encountered when
attempting to plug code hardening passes among code optimization passes, for which
the underlying questions are : which protection must be applied first ? Before or
after which optimization pass ?
In the context of our implemented protections, we will explain why it was profitable
in terms of code size and execution speed, to modify some existing LLVM passes.

1An idempotent instruction is an instruction that can be freely re-executed, producing always
the same result.

2



The internal structure of our modified compiler is illustrated by Figure 1, where
gray boxes depict modified LLVM passes and black boxes depict new implemented
passes.
The supplied source code can be annotated to describe the sections of the program
that need to be protected. The CFI protection composed of CFG analysis and
transformation passes is applied first after IR optimizers. The instruction selection
and Register allocation passes are modified to have the generated instructions in
an idempotent form. A set of instruction transformation passes are applied after-
ward to convert the rest of non idempotent instructions into equivalent sequences of
idempotent instructions. Then instruction are safely duplicated before instruction
scheduling to take benefit of having duplicated instructions scheduled. A separation
pass is then run to leave a certain distance between original instructions and its
duplicates, the goal is add an additional level of resistance against fault injections.
The duplication is applied late in the compilation flow, right before the code emis-
sion for the following reasons: (1) to be sure that the duplicates will not be removed,
(2) to harden the sections where the CFI is applied, because The CFI alone is vul-
nerable to instruction-skip.

We will report our experimental results that illustrates the effectiveness, in terms
of code performance, of the compiler approach for security in general, and for com-
bining different protections in particular, compared to the source to source approach
and the assembly approach. These evaluations have been conducted on an ARM
Cortex-M3 microcontroller.

Moreover, depending on the amount of time that will be assigned to us if our sub-
mission is accepted, we envisage a short demonstration to illustrate the effectiveness
of the implemented countermeasures regarding to the fault injection models they
are supposed to protect against.
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