Chapter 6

Introduction to Dynamic Code Generation — an
Experiment with Matrix Multiplication for the
STHORM Platform

Damien Couroussé, Victor Lomiiller, and Henri-Pierre Charles

6.1 Introduction

Since the early beginning of computer history, one has needed programming lan-
guages as an intermediate representation between algorithms description and machine-
readable instructions. In broad outline, running an algorithm on a computer requires
the following steps: (1- software development, implementation) the developer tran-
scribes the algorithm into a source file containing programming language instruc-
tions, (2— compilation) a compiler translates these programming language instruc-
tions into machine code and performs adaptations to the original code for optimized
fit to the target execution support, (3— execution) the processor reads and executes
the machine instructions, loads the input data and produces the data results.
Because compilation is performed before the program is run, the execution con-
text and run-time data are not known at the time of code generation (Figure 6.1a).
This means that, in order to leverage such information in code optimizations, one has
either to assume about the characteristics of the execution context (and to provide
verification mechanisms), to add extra instructions to adapt the program behavior
depending on runtime data, which is known as code specialization, or to generate
the program’s machine code at run-time, after the execution context is known.
Dynamic code generation can be achieved by interpretation or compilation at
runtime [78]. In classical frameworks, the aim is to provide a generic infrastructure
for code generation, bounded by the syntactic and semantic definition of a program-
ming language. The generality of such solutions comes at the expense of an impor-
tant overhead in code generation, both in terms of memory footprint and computing

Damien Couroussé
CEA, LIST, DACLE/LIALP, F-38054 Grenoble, France e-mail: damien.courousse @cea.fr

Victor Lomiiller
CEA, LIST, DACLE/LIALP, F-38054 Grenoble, France e-mail: victor.lomuller @cea.fr

Henri-Pierre Charles
CEA, LIST, DACLE/LIALP, F-38054 Grenoble, France e-mail: henri-pierre.charles @cea.fr

107

108 Introduction to Dynamic Code Generation

power. A well-known example is the Java programming language, designed to en-
hance application portability: Java source code is written without a priori knowledge
of the platform that will execute the final machine code, thanks to a virtual machine
that relies on an intermediate representation, the Java bytecode (Figure 6.1b). At
runtime, the bytecode is either interpreted or compiled into machine code as soon
as the overhead of code generation can be amortized by repeated calls of the gener-
ated code [79]. Despite the fact that a virtual machine has all required information
to perform data-dependent optimizations, interesting values are difficult to use for
such systems owing to an already high code generation cost [78]

Code optimization from run-time information is also useful for large-scale par-
allel computing systems, where an application component can be populated on a lot
of processing elements. This application component has to be parametrisable so that
its behaviour can be adapted to the processing element where it is instantiated. To
do so, one would need either (1) a generic implementation that one can parametrize
at instantiation but that will suffer from the performance overhead brought by a
generic implementation, or (2) to modify and re-compile the component dynami-
cally at run-time after one knows where it will be finally executed. Being able to
specialize the executed code for each of the computing elements is likely to pro-
vide performance improvements, as long as the cost for such optimization remains
modest. This issue is applicable to all large-scale multi-processor platforms: from
High Performance Computers in data centers to multiprocessor Systems-on-Chip
(MPSoCs) in future embedded devices. Due to the distributed nature of comput-
ing and memory resources in many-core platforms, it becomes challenging to bring
dynamic compilation capabilities to such platforms. Moreover, because of the non-
negligible memory footprint of the frameworks for Just-In-Time compilation (JITs),
the limited size of the local memory in embedded many-core platforms becomes an-
other important bottleneck in this context.

deGoal was designed to provide application developers the ability to implement
application kernels tunable at run-time depending on the execution context, on the
characteristics on the target processor, and furthermore on the data to process: their
characteristics and their values [80]. Usually in processing applications, most of
the execution time is spent in a very small portion of the whole application source
code, which is most of the time a computation-intensive task also called kernel. We
assume that improving the performance of kernels can leverage the overall appli-
cation performance. Therefore, the idea using deGoal is to embed ad hoc run-time
code generators, called compilettes, in a software application. Each compilette is
specialized to produce the machine code of one application kernel. On the contrary
to dynamic compilation, in our solution we embed at runtime only the necessary
processing intelligence to perform code optimizations that can exploit the proper-
ties of the data to process, but no analysis of the intermediate representation or a
subset such as bytecode (Figure 6.1c). As a consequence, this enables the produc-
tion of very fast code generators (10 to 100 times faster than typical frameworks for
runtime code interpretation or dynamic compilation). As such, deGoal provides a
lightweight solution for dynamic code generation applicable to massively parallel
systems. The compilettes offer a low memory footprint and very fast code gener-

Title Suppressed Due to Excessive Length 109

RUNTIME

RUNTIME

(c) runtime code generation with deGoal compilettes

Fig. 6.1 Illustration of the static and dynamic compilation schemes, and comparison with the run-
time code generation with compilettes. IR stands for Intermediate Representation

ation. Furthermore, deGoal was designed to provide very large portability, which
makes it easily applicable to heterogeneous platforms: The compilettes are com-
piled from ANSI-C source code after source-to-source code transformations. This
the code generation process that we propose here can target a large number of plat-
form architectures, which is only limited by the availability of a C compiler for the
processor that will perform the code generation at runtime.

In this paper, we present an approach to describe a specialized code generator.
The aim is to build a system that:

Minimizes the generation overhead compared to classical JIT systems.
Allows more flexibility over the generated function application domain. Specifi-
cally, we want to be able to select the data-type at run-time.

e Brings gain in performance, or at least similar performances, by removing dead
code, unused loads or by constant propagation. ..

Our main contribution in this paper is:

e The presentation of a way to describe how a code generator should behave for a
key part of an algorithm.

e To illustrate that taking into account run-time environment for auto-tuning is
possible, and how it offers a performance improvement.

e The illustrate the use of specialized code generation for the STHORM platform

110 Introduction to Dynamic Code Generation

The rest of this paper is organized as follows: section 6.2 introduces the core
idea of deGoal and data-dependent code optimization, section 6.3 details the use of
our tool on matrix multiplication for the processors of a MPSoC, and the results
achieved. We end this chapter by providing an overview of the related works in
section 6.4.

6.2 Overview of deGoal

6.2.1 Kernels and compilettes

The two categories of software components around which our code generation tech-
nique is organised are called kernels and compilettes.

Kernel A kernel is a small portion of code, which is part of a larger application,
and which is the target of our runtime code generation setup. Our technique fo-
cuses on the optimisation at runtime of these small parts of a larger application
in order to improve the kernel’s performance. In the context of the typical use
of deGoal, good performance is understood as one or several criteria among low
execution time, low memory footprint and low energy consumption.

Compilette A compilette is designed to generate the code of one kernel at run-
time. A compilette can be understood as an an hoc small code generator that is
executed at application runtime. We use the term compilette to underline the fact
that, in order to achieve very fast code generation, this small runtime generator
does not embed all the optimisation techniques usually carried out by a static
compiler, but only the required ones considering the target kernel to optimize.

In order to target computing architectures that include domain-specific accelera-
tors and to raise the level of abstraction of the source code, compilettes are described
using a mix of standard C and of a dedicated high-level ASM language: Cdg [80].
This language has demonstrated its ability to achieve performance improvements in
comparison with highly optimised static code [81]. We have chosen to stay with an
assembler-like language in order to stay as close as possible to the final run-time
model: an instruction-set processor. Our aim is furthermore to allow the direct use
of multimedia arithmetics and to provide flexible and easy support to vectors and
complex data sets.

The main paradigm shift relies in the fact that Cdg instructions describe code
to be generated instead of code to be executed. On the contrary to common ASM
languages, it is possible here to parametrise these instructions with values known at
runtime, and to use vector variables. The variables manipulated are vector registers,
whose size will be determined at the time of code generation, when the use of the
physical registers in the programming context is known. It is also possible to map
the assembly instructions to vector instructions when they are available on the target
processor, and to map the assembly instructions to different arithmetic operators

Title Suppressed Due to Excessive Length 111

static ° runtime
-cdg ;@ o -cdg. c;y Eu binary 8 binary
[} O~ (]
40 | e
.c @ © .c ﬁ 89 §
| |
| |
| |
| |
| |
: :
DESIGN.~ ! STATIC ! RUN TIME
TIME : COM_FF]I'\LA%TION : (data adaptation)
L} L}

Fig. 6.2 deGoal workflow: from the writing of application’s source code to the execution of a
kernel generated at runtime

depending on the data values to process. As we will illustrate in section 6.2.3.2, it is
possible to mix C instructions and Cdg instructions. In this case, the C source code
will control the code generation done in the Cdg instructions.

The instruction set includes:

A variable length register set The instruction set uses vectorial registers with vari-
able width and a variable number of elements. i.e. the programmer could define
VectorType f float 64 8, to use any register of type f as a vector of 8
elements of 64 bit floating point values.

Classical arithmetic instructions add, sub, mul, div, but also instructions spe-
cific to the multimedia domain such as sad (sum of absolute differences), mma
(matrix multiply and add) and FFT butterfly. These instructions can work on reg-
isters of variable length and type.

Load and store This family of instructions supports stride description. This per-
mits the description of complex memory access patterns.

Using this high-level instruction set, deGoal can generate the corresponding in-
structions for processors which have native support, or generate optimised code for
processors without support. In both cases the code generation is fast and produces
efficient code.

6.2.2 Workflow of code generation

The building and the execution of an application using deGoal consists of the fol-
lowing steps: writing the source code; compiling the binary code of the application
and the binary code of compilettes using static tools; generating the binary code of
kernels by compilettes; running the kernels. These steps are illustrated in Figure 6.2
and are explained below:

112 Introduction to Dynamic Code Generation

Application development time: writing the source code This task is handled by
the application developer, and/or by high-level tools. The source code of com-
pilettes is written in specialized . cdg source files that allow for the mix of Cdg
and C languages, while the rest of the application software components are writ-
ten using a standard programming language, such as C.

Rewrite time: generation of C source files This step consists in a source-to-source
transformation: the . cdg source files are translated into standard C source files
by degoaltoc, which is one of deGoal tools.

Static compilation time: compilation of the application The source code of the
application now consists in a set of standard C source files, including the source
code of the compilettes. The binary code of the application is produced by a
standard C compiler. This step is the same as in the development of a standard C
application.

Runtime: generation of kernel’s binary code At runtime, the compilette gener-
ates optimized binary code for the kernel(s) to optimize. This task can be exe-
cuted on a processor that is different of the processor that will later run the kernel.
Furthermore, the compilette’s processor and the kernel’s one do not necessarily
need to have the same architecture. A compilette can be run several times, for
example as soon as the kernel needs to be regenerated for new data to process.
We have detailed on figure 6.2 two particular inputs of the compilette: data and
hardware description. The originality of our approach indeed relies in the gener-
ation of a binary code optimized for a particular set of application data. At the
same time, the code generation is able to introduce hardware-specific features.

Runtime: kernel execution The program memory buffer filled by the compilette
is run on the target processor (not shown in figure 6.2).

6.2.3 A Tutorial Example

Our tutorial example illustrates how to handle simple kernels for scalar multipli-
cation using deGoal (Figure 6.3). We introduce the main concepts of deGoal with
the trivial example of the multiplication of two integer variables. We then elabo-
rate on vector multiplication. For the purpose of illustrating how code generation
is performed, our examples are based on the STxP70 processor, described in sec-
tion 6.3.2.1. However, the source code of the compilettes illustrated here could be
applied straightforward to other processor architectures.

6.2.3.1 Simple multiplication

‘We want to perform the runtime specialization of the generic function genericMul
that multiplies two integers (Figure 6.3a). After specialization, the function will be
replaced by a function that multiplies by a constant known at runtime, i.e. that spe-
cializes the val parameter of genericMul. However, this parameter can only be

—_

O 00N kW

Title Suppressed Due to Excessive Length 113

int genericMul (int param, int PUSHRL 0x4000 ;;
val) G7? MAKE32 R12, 3 ;;
{ G7? MP RO, RO, R12 ;;
return (paramxval); POPRL 0x4000 ;;
} G7? RTS ;;
(a) Generic code in C (c) assembly code (val=10)
void mulCompile (cdgInsnT xcode, PUSHRL 0x4000 ;;
int wval) G7? SHL RO, 1;;
{ POPRL 0x4000 ;;
#[G7? RTS ;;
Begin code Prelude in
mul out, in, #(val) (d) assembly code (val=2)
rtn
End
14; G7? MAKE32 R12, 10 ;;
} G7? MP RO, RO, R12 ;;

G7? RTS ;;

(b) Compilette code (in Cdg)
(e) assembly code (val=10) for a leaf kernel

-
Fig. 6.3 A tutorial example: dynamic specialisation of multiplication.

known at runtime: at the initialization time of the process or during the program
execution. Furthermore, it is likely to change multiple times.

The compilette mulCompile is a standard C function that includes elements of
the Cdg language at lines 3 to 8 between # [and] # (Figure 6.3b). Line 4 marks the
moment where the code generation actually begins. Prelude states that this block
needs stack and register management: in the generated code, we only save and re-
store the R14 register (link register) because R0 and R1 are defined as scratch regis-
ters in the ABI (Application Binary Interface) of the STxP70. code is the pointer to
the code cache, and finally Prelude comes with one parameter: in, which means
that the generated kernel will take one parameter named in. According to the ABI
of our target processor, in will be allocated by default on RO.

Finally, the rtn instruction is the return instruction that ends the kernel routine
and inserts the return instruction. End ends the code generation: during code gener-
ation, the evaluation of this instruction triggers the computation of branch locations
and the flushing of internal data.

Line 5 performs the multiplication between register in and a C r-value (written
inside # ()) and stores the result in out. In this case, the r-value is simply val. The
compilette, when called at runtime, produces a binary kernel for the architecture se-
lected at compilation time (Figures 6.3c and 6.3d, respectively when val equals to
10 and 2). The two dotted arrows highlight the locations where the runtime value
val is evaluated and integrated into the produced code as a constant. In this tutorial
example we illustrate a simple data-dependent optimization: the compilette gener-
ates either a kernel that uses the standard multiplication instruction (Figure 6.3c),

O R R

AW N =

(O N I R S

114 Introduction to Dynamic Code Generation

void vector_mul (int * A, int A_len, int alpha, int * B) {
for (int i=0; i<A_len; i++) {
B[i] = alpha * A[i];
}

Fig. 6.4 A trivial implementation of vector multiplication in C

or the shift left instruction (Figure 6.3d) depending on the value taken by val at
runtime.

The source code of the compilette (Figure 6.3b) is statically processed by deGoal.
The specialized code generator is then generated and dumped into a C file, that is
statically compiled by the compiler of the target platform. This approach removes
any direct intermediate representation manipulation which needs complex code gen-
eration. This way, we reduce the required computation time to the minimum.

6.2.3.2 Vectorial multiplication

Now that we have introduced the main elements of deGoal for the building of code
generators, we can safely introduce an important feature of our tool: vectorial reg-
isters. To do so, we will extend our previous example to vector multiplication. Our
aim is to compute [B] = o X [A], where [A] is the input vector, ¢ a scalar known at
the time of code generation, and [B] is the result vector.

Using standard C, we could write vector multiplication as in figure 6.4. With
dynamic code generation, we will specialise the kernel according to the memory
location of A, its length, and the value of &. As a consequence, the kernel generated
by the compilette will need only one invocation parameter: the address of vector B
(assuming that it has the same length than A).

There are several possibilities to implement such a code generator, and we will
illustrate two of them here: (1) with the vector support of deGoal instructions (fig-
ure 6.5), and (2) by mixing cdg instructions with plain C to control the code gener-
ation and loop over the vector elements (figure 6.6). The disassembled binary code
that will be produced for these two generated kernel are illustrated in figures 6.7a
and 6.7b, respectively. To use float arithmetic instead of integer, one would sim-
ply need to replace int by float at lines 5 and 6 in figure 6.5 and at line 4 in
figure 6.6, when declaring the types used for scalar arithmetics.

In the compilette illustrated in figure 6.5, each of the elements of the vector reg-
ister v will be mapped to a physical register, as long as there are enough registers
available on our target processor. In figure 6.5, one can see in the generated code that
v has been mapped on registers R2 to R9. v being a vector register of § elements,
the instruction 1w v, tmp will actually generate 8 successive memory loads with
a stride of 1 word from the address contained in the register variable tmp, mapped
to R1. The code generator proceeds similarly for the mul and sw instructions. The

Title Suppressed Due to Excessive Length 115

void compilette (cdgInsnTx code, int % A_addr, int A_len, int
alpha) {

Begin code Prelude B_addr
Type 1int32 int 32
Type vectorInt32 int 32 8
Alloc int32 tmp
Alloc vectorInt32 v

mv tmp, # (A_addr)
lw v, tmp

mul v, v, #(alpha)
sw B_addr, v

rtn

Free tmp, v
End

1#;

}

Fig. 6.5 Implementation of a compilette for vector multiplication using vector registers. For the
sake of simplicity, we assume that we have enough registers available to allocate vectors A and B
at once.

multiplication (MP) instruction of the STxP70 processor only works with two reg-
ister arguments and not with an indirect memory address as an argument. Thus,
the instruction make32 R12, 104876 instruction at line 2 of figure 6.7a is au-
tomatically generated by mul to store the address A_addr in the scratch register
R12.

Figure 6.7a also demonstrates the capability of our instruction scheduler to deal
with instruction latency and register dependencies. We will illustrate this point on
one example: on the STxP70 processor, the LW instructions have a latency of 3
cycles. This means that, to avoid cycle stalls, the MP instruction on R2 (line 6) must
come 3 cycles after the instruction LW R2 (line 3).

The main difference of C-controlled kernel (figure 6.6) with the vectorized ker-
nel (figure 6.5) comes from the use of the same register variable tmp, mapped on
the physical register R5. tmp successively stores each of the memory loads from
vector A (A_addr) and is then used to store the result of the multiplication by o
(alpha_r). Because the same physical register R5 is used to perform all of the
store and multiplication operations for each of the vector elements, our instruction
scheduler is not able to bundle the instructions generated in this kernel because of
register dependencies. As a consequence, the binary code generated from this kernel
(figure 6.7b) is far less compact than the code in figure 6.7a.

To give an idea of the level of optimisation enabled in this example, we com-
pare the execution times of the kernels in figures 6.7a and 6.7b and of the C version
illustrated in figure 6.4. The compilation is performed with the —O3 optimization
flag, and the execution times are measured using the simulator of the STxP70 pro-

116 Introduction to Dynamic Code Generation

void compilette (cdgInsnTx code, int % A_addr, int A_len, int
alpha) {
#[
Begin code Prelude B_addr
Type scalar32_t int 32

Type addr_t uint 32
Alloc scalar32_t alpha_r
Alloc addr_t A_addr_r

Alloc scalar32_t tmp

mv alpha_r, #(alpha)
mv A_addr_r, #((unsigned int)A_addr)

14#;
for (int i=0; i<A_len; i++) {
#1(
1w tmp, @(A_addr_r + #(1i))
mul tmp, tmp, alpha_r
sw @(B_addr + #(i)), tmp
14#;
}
#1
rtn
Free tmp, A_addr_r, alpha_r
End
14#;

}

Fig. 6.6 A compilette for vector multiplication controlled. The code genation is controlled by C
statements

cessor in CAS mode, presented later in section 6.3.2.1. The kernels execute respec-
tively in 51, 71 and 80 cycles for two vectors containing 8 elements. The binary
code of the C version counts 18 instruction bundles. This code is even smaller than
our kernel in figure 6.7a because the C kernel uses the hardware loop instructions
of the STxP70. We could help the C compiler with hints about vectorisation (e.g.
#pragma unroll), but unrolling vectorial multiplication at the time of static
compilation is difficult because the vector lengths are not known. On the contrary,
at runtime, it becomes easy to perform loop unrolling knowing the lengths of the
vector that our kernel will process. For larger loops where unrolling would incur a
loss in performance, we could as well use branch instructions and loop structures.
This is not shown in this paper for the sake of brevity.

O 0NN B W =

Title Suppressed Due to Excessive Length 117

PUSHRL 0x43F8;; PUSHRL 0x4038;;
MAKE32 R12, 1048576; MAKE32 R1, 16176;; MAKE32 R4, 16152; MAKE32 R1, 1048576;;
LW R2, @(R1+0x0);; LW R5, @(R4 + 0x0);;
LW R3, @(R1+0x4);; MP R5, R5, Rl;;

LW R4, @(R1+0x8);; SW @ (RO + 0x0), R5;;
LW R5, @(R1+0xC); MP R2, R2, R12;; LW R5, @(R4 + 0x4);;
LW R6, @(R1+0x10); MP R3, R3, R12;; MP R5, R5, R1;;

LW R7, @(R1+0x14); MP R4, R4, R12;; SW @(RO + 0x4), R5;;
LW R8, @(R1+0x18); MP R5, R5, R12;; LW R5, Q@(R4 + 0x8);;
LW R9, @(R1+0x1C); MP R6, R6, R12;; MP R5, R5, R1;;

SW @ (RO+0x0), R2; MP R7, R7, R12;; SW @(RO + 0x8), R5;;
SW @ (RO+0x4), R3; MP R8, R8, R12;; LW R5, Q@(R4 + 0xC);;
SW @ (RO+0x8), R4; MP R9, R9, R12;; MP R5, R5, R1;;

SW @ (RO+0xC), R5;; SW @(RO + 0xC), R5;;
SW @ (RO+0x10), R6;; LW R5, @(R4 + 0x10);;
SW @ (RO+0x14), R7;; MP R5, R5, R1l;;

SW @ (RO+0x18), R8;; SW @(RO + 0x10), R5;;
SW @ (RO+0x1C), R9;; LW R5, Q@(R4 + 0x14);;
POPRL 0x43F8;; MP R5, R5, Rl;;

RTS; ; SW @(RO + 0x14), R5;;

LW R5, @(R4 + 0x18);;
MP R5, R5, R1;;

SW @ (RO + 0x18), R5;;
LW R5, @(R4 + 0x1C);;
MP R5, R5, R1;;

SW @ (RO + 0x1C), RS5;;
POPRL 0x4038;;

RTS; ;

(a) kernel generated from figure 6.5

(b) kernel generated from figure 6.6

Fig. 6.7 Binary code (disassembled) of the kernel generated by the compilettes for vector multi-
plicaiton. For the sake of simplicity, guard registers are not shown here.

6.3 An experiment on matrix multiplication

6.3.1 Implementation of matrix multiplication

This section describes the implementation of a processing kernel for matrix mul-
tiplication in order to illustrate the use of deGoal. We describe first a reference
implementation, which is statically compiled with the platform’s compiler. We then
describe two improved implementations using deGoal: the first exploits matrix prop-
erties such as matrix size, element size, and memory addresses; the second exploits
the values of matrix elements.

6.3.1.1 Reference implementation
Our aim is to perform the standard matrix multiplication as described in equa-

tion 6.1, where a, b and ¢ stand respectively for elements of matrices [A], [B] and [C]
of sizesn x p, pxgandn X q:

O 0NN B W =

118 Introduction to Dynamic Code Generation

P
Vie{l,....n},Vje{l,....q},cij =Y auby; (6.1)
k=1
The reference implementation of this algorithm is illustrated in Figure 6.8. We
used it as a reference implementation for our experimental measurements.

clear (C)
for (y=0; y < n; y++) {
for (x=0; x < qg; x++) {
for (i=0; i < p; i++) {
Clx,y] = Clx,y] + A[i,y] * Blx,1]

Fig. 6.8 Reference implementation of the matrix multiplication (in pseudo C code)

6.3.1.2 First implementation in a compilette

A simplified overview of our implementation of the matrix multiplication using
deGoal is illustrated in Figure 6.9. compilette is the code generator that pro-
duces an optimized kernel function kernel, which encompasses the inner-most
loop from Figure 6.8. The code generated for kernel depends on the properties
of matrices A, B and C : row and column sizes, memory alignment and address of
the data in memory. These values are precomputed and propagated into the instruc-
tions of kernel at code generation time. In consequence, kernel does not need
invocation parameters.

This implementation of kernel is very similar to the reference implementation
introduced above, at the exception that all the constants describing matrix properties,
which are known at code generation time, have been propagated into the generated
code. As we will show in the results section, these improvements alone already
contribute to a good performance improvement.

/+ generation of the kernel’s code x/
(kernel, v) = compilette(A, B, C)

/* compute matrix multiplication =/

clear (C)
kernel () ;

Fig. 6.9 optimized implementation of the matrix multiplication using deGoal (in pseudo-code)

Title Suppressed Due to Excessive Length 119

6.3.1.3 Kernel specialization on matrix values

If the matrices to process are sparse or contain remarkable data values, it is possible
to further increase performance by specializing the generated code depending on the
element values of the matrix to process. We illustrate the data-dependent specializa-
tion of our processing kernel with a naive algorithm for sparse matrices. Usually,
applications that involve the processing of sparse matrices will move to different
processing algorithms and to a dedicated representation of data. However, our aim
is to illustrate here how, thanks to the use of data-dependent optimizations with run-
time code generation, it is possible to drastically improve the performance of our
base algorithm.

The code generation is split in two phases (Figure 6.10): template_gen gen-
erates the global structure of the processing kernel that is independent of data values
in A. At each processing loop, data_gen fills the kernel’s code upon data values
in the row vector to process in A. When there is nothing to execute (for example, all
matrix values in the current row in A are null), data_gen returns NULL and we
immediately move to the next loop step.

This technique involves an extra overhead because the kernel’s code is regen-
erated at each step in the innermost loop. However, as we will show below, this
overhead can be compensated very quickly for sparse matrices.

clear (C)

/+ generate the kernel’s structure x/
(kernel_templ, v) = template_gen(A, B, C);

/* process matrix multiplication =/
for (y=0; y < n; y++){
for (i=0; i < p; i+=v){
/* specialize instructions on matrices’ data */
kernel = data_gen(kernel_templ, A, vy, 1);
if (NULL != kernel)
kernel (y, 1);

Fig. 6.10 Implementation of the matrix multiplication (pseudo-code) with code specialization on
matrix values

120 Introduction to Dynamic Code Generation

6.3.2 Experimental results

6.3.2.1 Target architecture

We target in this work the embedded platform called STHORM (formerly Platform
P2012), jointly developed by STMicroelectronics and CEA [55].

The STxP70-4 processor is a 32-bit RISC core. It comes with a variable-length
instruction encoding and a dual issue VLIW architecture. Two sets of hardware
loop counters are provided to enable loop execution at maximum speed without
cycle overheads due to software control. The core processor contains an internal
extension for integer multiplication, and an optional single-precision floating point
extension used in this experiment.

The STHORM SDK is delivered with a full toolchain for compiling, debugging,
profiling and simulation in functional and cycle-accurate modes. Our experiments
are based on the platform’s toolchain and on the ISS simulator of the STxP70 core
in CAS (cycle-accurate) mode. In this mode, the simulator models all the latencies
that can occur in the processor pipeline : instruction latency, CPU stalls and register
dependencies. The latencies of memory accesses are not taken into account by this
mode. All our experiments are however using the scratchpad memories (TCDM and
TCPM) of the processor, which lowers the effect of this limitation of the simulator
in our experiments.

6.3.2.2 Port of deGoal for the STxP70 processor

deGoal handles by default register allocation and a simple mechanism for instruction
scheduling. A simple scheduler allows for the optimization of instruction scheduling
with regards to instruction latencies and register dependencies.

However, as compared to standard RISC processors, code generation for the
STxP70 processor is a bit more challenging, especially when moving to runtime
code generation. Thenceforth, we extended the port of deGoal for this architecture
with VLIW support: optimizing the dual issue and the construction of instruction
bundles. Also the floating-point support comes as an extension and uses a separate
register file of 16 32-bit registers. Our port of deGoal supports all of these features
of the STxP70.

6.3.2.3 Experimental setup

We have evaluated our optimized version of the matrix multiplication against the
reference implementation described in section 6.3.1.1.

The reference implementation is compiled in —03. Loop unrolling, support of
hardware loop counters and of the floating-point extension are also enabled. The
best performance for the reference implementation was eventually obtained with an

Title Suppressed Due to Excessive Length 121

implementation close to the pseudo code described in Figure 6.8, with the addition
of #pragma unroll 8 on top of the innermost loop.

The code generated by deGoal’s compilette does not depend on compiler opti-
mizations, because it is generated at run-time by the compilette. Hence whatever
the compiler optimizations selected, the execution time of the generated kernel re-
mains constant. Compiler optimizations have however an effect on the performance
of the compilette, because it is statically compiled as a standard application compo-
nent. In our performance measurements, we have used the same compiler options to
compare the reference implementation and our implementation using deGoal.

We have also exploited the VLIW extension of the STxP70-v4 core, using the
appropriate compilation flags. On the compilette’s side, VLIW support is integrated
in the cdg pseudo-ASM language of deGoal. As a consequence, it is not exposed
to the developer and the compilette is tailored to automatically exploit this feature
as soon as the processor supports it.

6.3.2.4 Measure of the code generation time

We have instrumented the compilette to measure the time spent in code generation at
run-time: code generation takes from 150 to 300 cycles per instruction bundle gen-
erated. The variation of the average speed of code generation per instruction bundles
is due to the computation of instruction bundling, the scheduling of instructions ac-
cording to register dependencies and the extra computations done at the end of code
generation, for example computing the jump addresses. The best code generation
speed is achieved for unrolled code without instruction bundling.

The code generation time is not taken into account in the speedup results pre-
sented below, because it is not necessary to regenerate the code for each matrix
multiplication. As an indicator, code generation represents 100 % of the execution
time for a multiplication of 16 x 16 matrices, and less than 0,1 % for 256 x 256
matrices.

6.3.2.5 Performance of the processing kernels

Figure 6.11 illustrates the performance improvements achieved using deGoal as
compared to the reference implementation compiled with full optimization, for two
cases of code generation: using the hardware loop counters provided by the STxP70
core (HW loop), and fully unrolling the kernel’s code (unrolled). The speedup
factor s represents the reduction factor of the execution duration of our implemen-
tation as compared to the reference implementation. We calculate it as follows:

5= (é(ergeizﬂ) , where #(ref) measures the time execution of the reference implemen-
tation, ¢(degoal) the time execution of the generated kernel. Our implementation
using compilette brings a good overall performance improvement: when the matrix
size is 256 x 256 elements, we achieve a reduction of the execution time of 21 %

for integer multiplication, and of 17 % for floating-point multiplication.

122 Introduction to Dynamic Code Generation

1.25 T T T
e—e int, HW loop
Y—¥ int, unrolled o \
1.20r| » -® fpx, HW loop B S]
v v fpx, unrolled | ~
115 .-
S
9]
L
21.10
el
(]
[}
o
(]
1.05
1.00f 1
0-95¢ 32 64 128 256

matrix size

Fig. 6.11 Speedup factor measured, for integer multiplication (plain line) and floating-point mul-
tiplication (dashed line), according to the implementation described in section 6.3.1.2.

Figure 6.12 illustrates the speedup factor measured when using code specializa-
tion on the data of matrix A, as presented in section 6.3.1.3. We illustrate here the
most favorable case where matrix A is the identity matrix. In this case, the looped
implementation shows a huge speedup because of the instructions removed from the
kernel when null values are met in matrix A. The unrolled version is not efficient,
considering the favorable experimental conditions, because a part of the code gener-
ation is performed during kernel’s execution, and code unrolling requires a lot more
instructions to be generated.

6.4 Related work

There is an extensive amount of literature about approaches related to our work with
deGoal.

Dynamic compilation and interpretation are most of the time used together in
Just-In-Time compilers (JITs) [78]. JITs use interpretation for the parts of the pro-
gram that are run seldom, and dynamic compilation is reserved for hostpots, which
are identified by tracing the application activity at runtime. Such techniques usually
require to embed a large amount of intelligence in the JIT framework, which means a

Title Suppressed Due to Excessive Length 123

14 T T T
e—eo int, HW loop
Ll ¥Y—v int, unrolled
e - fpx, HW loop
fpx, unrolled
10
S
E 8
Qo
=}
9
o 6
Qo
%]
4
2
Y6 32 64 128 256

matrix size

Fig. 6.12 Speedup factor measured, for integer multiplication (plain line) and floating-point mul-
tiplication (dashed line), according to the implementation described in section 6.3.1.3.

large footprint and a significant performance overhead. In order to target embedded
systems, some research works have tried to tackle these limitations: memory foot-
print can be reduced to a few hundreds of KB [82], but the binary code produced
often presents a lower performance because of the smaller amount of optimizing
intelligence embedded in the JIT compiler [83].

In deGoal, the objective is to reduce the cost incurred by runtime code generation.
Our approach allows to generate code at least 10 times faster than traditional JITs:
JITs hardly go below 1000 cycles per instruction generated while we obtain 25
to 80 cycles per instruction generated on the STxP70 processor. Our approach is
similar to partial evaluation techniques [84, 85], which consists in pre-computing
during the static compilation passes the maximum of the generated code to reduce
the run-time overhead. At run-time, the finalization of the machine code consists
in: selecting code templates, filling pre-compiled binary code with data values and
jump addresses. Using deGoal we compile statically an ad hoc code generator (the
compilette) for each kernel to specialize. The originality of our approach relies in
the possibility to perform run-time instruction selection depending on the data to
process [80].

Code specialization is a technique similar to partial evaluation. Specialization
can be done statically, at compilation time, or dynamically. C++ templates might

124 Introduction to Dynamic Code Generation

be the most well known static specializer. The developer writes a function that is
parametrized by a list of types or integer-constant parameters. When the template
is used, the user indicates missing parameters and the compiler automatically gen-
erates the new function according to those parameters. This brings more flexibility
during the development process at the expense of a fast growing binary size (for
each set of parameters, a new function is generated). However, the template param-
eter values have to be known at compile time, which strongly limits the number of
code optimizations applicable.

Equivalent systems that operate at run-time are less used and include a larger
diversity of approaches, which can be regrouped into different categories. Fully-
manual approaches rely on the user to describe what should be generated at run-
time [86, 87]. With this approach, the user has a fine control over the generated code.
Semi-manual approaches rely on the user to annotate parameters that should be
specialized [88]. Fully-automatic approaches try to detect, at compile-time, the code
parts that could benefit from run-time code generation [89, 90, 91]. Each approach
avoids an explosion in code size while maintaining a larger spectrum in which it can
be used. A major advantage is the capability to cover the whole function application
domain without having to speculate on parameter values. The major drawback is, of
course, that a part of the compilation cost has to be paid at run-time and has to be
amortized in one way or another.

Various optimizations can be performed in the various times of application life-
time, for instance during static compilation (where most optimizations are usually
performed), during link time [92, 93] or during installation time like ATLAS [94].
Some tools use complex schemes like FFTW [95], where multiple code variants
are generated, compiled and then evaluated at installation time. Then, during pro-
gram initialization the codelets are selected by a planner that is parametrized by
the size of the DFT to be computed. Another example that use a similar approach
is ATLAS [94]. Some other optimizations are staged across several times. For in-
stance, iterative compilation accumulates information through different times. With
enough information, it rolls back to an earlier time to perform new optimizations.
Profile-guided compilation (PCG) uses execution traces obtained by running the ap-
plication with a learning data-set to perform new optimizations. But few tools are
able to perform optimization based on the run-time environment.

Late code specialization is very close to our approach. Generally speaking, these
approaches pre-compile statically a template version of the application code, which
is completed at runtime by a code specializer. *C [87] extends the C syntax by adding
syntactic elements like * or @ to describe parts of code that will be generated at
run-time. The compilation phase transforms “C expressions into an Intermediate
Representation (IR). At runtime the IR is assembled and compiled via simplified
compiler back-end. DyC [88] is a tool that creates code generators from an annotated
C code. Like C, it adds some tokens such as @ to evaluate C expressions and
inject the results as an immediate value into the machine code. Calpa [91] uses
profile-guided compilation to detect functions that could benefit from runtime code
specialization and generate the code generator using DyC. Tempo [90] works on an
unannotated subset of C. It analyses the source code to detect parts of the code that

Title Suppressed Due to Excessive Length 125

could benefit from constant propagation, and creates a binary template from it. At
run-time, the template is filled with missing values and executed. Fabius [89, 96]
uses a similar approach to Tempo, applied to ML. Our approach differs from those
tools targeting late code specialization by using:

a low-level code representation with vector description,

no manipulation of byte-code at runtime,

the capability to control the code generation,

the capability to perform cross-architecture code generation.

Approaches for multi-core architectures mostly use a classical JIT. Our approach
tries to avoid the use of byte-code manipulation to focus on specialization using
run-time informations. LLVM [97] (Low Level Virtual Machine) is a compilation
framework that can target many architectures, including x86, ARM or PTX. One of
its advantages is the unified internal representation (LLVM IR) that encode a vir-
tual low-level instruction with some high-level information embedded on it. Various
tools were built on top of it, starting with clang, a C/C++/Objective-C compiler.
With the release of the CUDA toolkit 4.1, the Nvidia compiler compiler is based on
LLVM. The driver loads a textual representation of the assembly language targeting
the GPU, and then dynamically compiles it to a binary representation. This tech-
nique is here mainly used to hide the implementation details of Nvidia GPUs, and
not in the purpose of runtime optimizations.

6.5 Conclusion

In this paper, we have introduced deGoal as a tool for runtime code generation
thanks to the integration of compilettes in a binary application, and have illustrated
the benefits of using deGoal to optimize processing kernels.

We have shown that deGoal can easily compete with a highly optimized code
produced by a static compiler with little effort: the code produced has better per-
formance than a code statically compiled with full optimization, and furthermore
the quality of the code produced with deGoal is consistent and does not depend on
compiler’s options. deGoal also allows to specialize the code of a processing kernel
for a particular set of run-time data, which is not possible using a static compiler.
We have shown that for processing kernels with a high dependency on the data to
process the performance increase can be huge.

Because deGoal is related to the generation of machine binary instructions, its
scope of application is actually restricted to the processor. In order to use these
optimization techniques in large scale platforms, e.g. MPSoCs or HPC clusters, one
must rely on tools of higher level for the parallelization of an application on multiple
processing elements. Future work will present how it is possible to integrate kernels
optimized with degoal’s compilettes in large scale applications.

126 Introduction to Dynamic Code Generation

deGoal is currently under active development. It is able to produce code for mul-
tiple platforms: Nvidia GPUs, ARM processors (Jazelle, SIMD, Thumb, NEON),
the STxP70, and other RISC processors under NDA.

