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1 PHYSICAL ATTACKS: A MAJOR
CHALLENGE FOR EMBEDDED SYSTEMS

In the landscape of cybersecurity, a large field of research is dedi-
cated to physical attacks since the publication of the first attacks
in the early 1990s. Side-channel attacks can reveal the secret val-
ues processed in a circuit by observing physical quantities (power
consumption, electro-magnetic emissions, execution time, etc.).

Physical attacks constitute an important threat against embed-
ded systems; in particular, they are the most effective way to break
implementations of cryptography. The Smart Cards industry is up
with the design of countermeasures, and high security products
embed a large set of hardware and software countermeasures. With
the emergence of the Internet of Things, we observe a rapid increase
of the number of communicating devices, which present various
security needs, but also unequal levels of security [7]. Hence, we
advocate for the design of tools to automate the application of
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counter-measures on a large scale of programs and processor ar-
chitectures.

2 CODE POLYMORPHISM: BEHAVIOURAL
VARIABILITY AS A PROTECTION
PRINCIPLE

In the COGITO project, we focused on the use of runtime code
generation to introduce behavioural variability in embedded sys-
tems. Indeed, behavioural variability is often used as a protection
against physical attacks [6]. Security products embed hardware
and software desynchronisation mechanisms to achieve variability
in side-channels: for example clock jitters in hardware or dummy
loops of random duration in software. We defined code polymor-
phism as the capacity of a program component to vary its observable
behaviour, at runtime, without altering its functional properties.
Code polymorphism can be considered as a hiding countermeasure:
the information leakage, which is observable physical quantities
during the secured computation, is hidden in the information noise
produced by the behavioural variability generated by the poly-
morphism. However, code polymorphism alone does not remove
information leakage as it would be the case with masking counter-
measures.

We implemented code polymorphism with runtime code gen-
eration of machine binary instructions (Fig. 1): the polymorphic
component is composed of (1) dedicated runtime code generators,
specialised for the targeted component so that it presents a low
memory footprint and a short code generation time, and (2) of
polymorphic instances which are the many code variants produced
by the polymorphic code generator at runtime. In order to pro-
duce many code variants of the same functional component, the
runtime code generator is driven by a source of random data. The
successive execution of many polymorphic instances, which are
all functionally equivalent but composed of different series of ma-
chine instructions, will induce a strong variability in the observable
behaviour of the polymorphic component.
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Figure 1: Overview of a reference compilation toolchain
(top), and of a compilation toolchain for the application of
code polymorphism with COGITO

3 MAIN PROJECT RESULTS
In our implementation of code polymorphism, each runtime code
generator is specialised for a dedicated polymorphic program. At
runtime, the generators perform code transformations involving
register renaming, semantic variants, insertion of useless machine
instructions, and instruction reordering. All those transformations
are highly parametrisable according to performance and security
constraints. Specializing the code generator is twofold: (1) it lever-
ages fast runtime code generation and small memory footprints in
order to minimise the overhead incurred by runtime code genera-
tion; (2) it prevents the injection of ill-formed or malicious programs
via the code generator (e.g. JIT spraying attacks).

We have shown that it is possible to implement a fully poly-
morphic software AES on an embedded system with a 32-bit ARM
Cortex-M core and only 8 kBytes of RAM, showing an increase of
execution time from 2× to 20× [3]. The overheads are highly vari-
able: they depend on the algorithmic nature of the original program
to protect, the level of behavioural variability and polymorphic
code transformations, and the frequency of code regeneration.

4 DISCUSSION
4.1 Resistance to side-channel attacks
Our work follows other research studies showing that code poly-
morphism is highly effective against side-channel attacks [1, 2, 4, 5]:
the number of side-channel observations necessary to perform a
successful attack is increased to the point that the attack is not
longer tractable in practice. Furthermore, it was shown that poly-
morphism can reduce information leakage to an undetectable level
according to standards of experimental evaluation such as the t-
test [2]. However, to the best of our knowledge, the resistance of
polymorphism was not investigated against the most recent side-
channel attacks involving advanced signal processing or machine
learning techniques.

4.2 Certification
All the products that embed cybersecurity solutions must be cer-
tified according to one or several certification standards before
being sold on the market. In collaboration with the National Cy-
bersecurity Agency of France (ANSSI), we have demonstrated that

our implementation of code polymorphism is compatible with the
current certification standards, in particular Common Criteria.

4.3 Design of the toolchain
In the early stages of the project, discussions with industrial bodies
and the transfer of a prototype implementation to all partners led us
to consider issues related to the industrialisation and the usability
of a toolchain for securing embedded software:

Determinism and reproducibility. Runtime code generation is
driven by random data so that an attacker cannot predict the ob-
servable behaviour of a polymorphic program. However, knowing
the series of random values used, the behaviour of the runtime code
generator is completely reproducible. In particular, this feature is
mandatory for debugging purposes.

Debug tools. Runtime code generation represents a paradigm
shift for the software developer as compared to traditional ap-
proacheswhere programming languages describe static instructions
that will be executed by a processor. In our case, the source code
implementation describes the execution of a runtime code genera-
tor, that will furthermore produce many different instances of the
target program.

Functional validation. A large body of research works in com-
puter science is focused on validating that a program is functionally
correct. To the best of our knowledge, these research works target
the validation of static programs mostly. Polymorphic code gen-
eration represents an interesting challenge, since in this case it is
necessary to demonstrate the validity of the whole class of poly-
morphic instances targeted by a polymorphic code generator. All
the polymorphic code transformations involved in our toolchain
have been designed to preserve the functional validity of the many
polymorphic instances produced. Until now however, we could
only conjecture about their correctness. Dedicated methods need
to be designed to achieve this goal.
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