
Micro-architectural Simulation of In-order and
Out-of-order ARM Microprocessors with gem5

Fernando A. Endo, Damien Couroussé and Henri-Pierre Charles
CEA, LIST, Département Architecture Conception et Logiciels Embarqués

F-38054 Grenoble, France
Email: first.lastname@cea.fr

Abstract—Heterogeneous multicore systems have gained mo-
mentum, specially for embedded applications, thanks to the
performance and energy consumption trade-offs provided by in-
order and out-of-order cores.

Micro-architectural simulation models the behavior of pipe-
line structures and caches with configurable parameters. This
level of abstraction is well known for being flexible enough to
quickly evaluate the performance of new hardware implementa-
tions, such as future heterogeneous multicore platforms.

However, currently, there is no open-source micro-architec-
tural simulator supporting both in-order and out-of-order ARM
cores. This article describes the implementation and accuracy
evaluation of a micro-architectural simulator of Cortex-A cores,
supporting in-order and out-of-order pipelines and based on the
open-source gem5 simulator. We explain how to simulate Cortex-
A8 and Cortex-A9 cores in gem5, and compare the execution time
of ten benchmarks with real hardware. Both models, with average
absolute errors of only 7 %, are more accurate than similar micro-
architectural simulators, which show average absolute errors
greater than 15 %.

I. INTRODUCTION

In embedded systems, reduced energy consumption is
essential to provide more performance. One reason is that
current energy storage technologies cannot scale with the
increasing demands. Another reason comes from the fact that
embedded systems usually have limited cooling capabilities,
which limits the power dissipation and consequently the
achievable performance.

A good way to reduce energy consumption is to use
the most energy efficient hardware available for a given
task. For example, in heterogeneous multicore systems, the
energy consumption can be reduced by mapping applications
to complex out-of-order cores, when performance is needed,
or to simpler in-order cores, when less demanding tasks are
executed [1].

Instruction set and RTL simulators are not adequate to
estimate the performance and energy consumption of future
heterogeneous multicore systems, because they are mostly cali-
brated to a specific hardware [2] and too complex to be modified,
respectively. On the other hand, micro-architectural simulators
offer a good trade-off between precision and simulation speed,
and bring flexibility for architectural exploration.

The simulation of heterogeneous cores at the micro-archi-
tectural level is already a mature research topic. For example,

This work was supported in part by the European Project TOUCHMORE
under Grant FP7-ICT-2011-7-288166.

Kumar et al. were the first to show the energy benefits of having
different types of cores in a SoC [1]. Lukefahr et al. evaluated
the possibility to push the heterogeneity of pipelines into the
core [3]. In both work, the studies were performed in simulators
of the Alpha ISA, currently not supported anymore. Nowadays,
the ARM ISA is more relevant in embedded computing
ecosystems. Then, the advantage of using ARM simulators
is that researchers can evaluate their tools without porting or
cross-compiling them to other platforms. For example, gem5 [4]
is a popular simulation framework that permits to simulate
unmodified ARM libraries and binaries, facilitating research
studies of embedded systems. gem5 is famous for its precise
micro-architectural models, simulating pipeline dependencies
at each stage, before computing the result. This emphasizes
the instruction timing and simulation accuracy (called execute-
in-execute modeling) [4].

This paper is the first in a series of articles comparing energy
and performance trade-offs of heterogeneous cores. We present
a simulation platform based on gem5 [4], which simulates
in-order and out-of-order pipelines of Cortex-A cores at the
micro-architecture level. Our contribution is:

• We detail how we implemented an in-order pipeline
in gem5, based on the out-of-order (O3) model.
gem5 already provides the InOrder model for micro-
architectural simulation, however it is not currently
functional for ARM.

• We show how to simulate detailed Cortex-A8 (in-order)
and Cortex-A9 (out-of-order) models in gem5.

• We validate the timing accuracy of these models by
comparing the execution time of ten benchmarks with
real hardware. To the best of our knowledge, this is
the first work that directly evaluate the timing accuracy
of the O3 model against real hardware.

• We show how to enhance the execution stage model
in gem5 to better simulate FP data transfer penalties
of the Cortex-A8.

• We compare the performance of a hypothetical dual
Cortex-A8 vs a real dual Cortex-A9.

This paper is organized as follows. Section II describes
the related work on micro-architectural simulation for ARM.
Section III presents the simulation framework based on gem5.
Section IV describes the reference and simulation models, and
the benchmarks used to evaluate the accuracy of the Cortex-A
models. The experiment results are presented in Section V. In



Section VI, we show the architectural and micro-architectural
exploration capability of gem5, by simulating hypothetical dual
Cortex-A8 processors. Finally, we conclude in Section VII.

II. RELATED WORK

SimpleScalar [5] was one of the first micro-architectural sim-
ulators, initially simulating a MIPS-like architecture and later
also Alpha processors. A version supporting ARM was released,
but only with the functional and timing accurate modes. After
SimpleScalar, a huge number of x86 simulators appeared [6],
[7], [8], [9]. A more recent simulation infrastructure, gem5 [4]
is a cycle-accurate micro-architectural simulator, which supports
the ARM ISA, including floating-point (VFP) and Advanced
SIMD extensions (NEON). Butko et al. compared the execution
time of gem5 modeling a Cortex-A9 with real hardware [10],
but using the Timing Simple model that does not simulate at
the micro-architectural level. A predecessor of gem5, the M5
simulator [11], whose out-of-order CPU model became the
O3 model in gem5, was validated against two Compaq Alpha
XP1000 systems embedding Alpha 21264 processors. However,
this work focused on the network bandwidth evaluation. The
maximum error obtained was no more than 11 %. To the best
of our knowledge, there’s no work that directly evaluates the
timing accuracy of the O3 model in gem5. Our work differs
from the previous ones by comparing in terms of execution
time the micro-architectural model for ARM in gem5 against
real hardware.

Not far from our approach, SimpleScalar also offered the
possibility to simulate in-order issuing in their out-of-order
model [5]. This technique has the advantage of virtually having
two simulators, in-order and out-of-order, but only maintaining
one implementation for both. In our work, we also based the
in-order simulation on the out-of-order implementation, but we
also disabled the effects of the register renaming, which may
boost the performance of the in-order machine, but may not
be cost-effective in real implementations.

III. SIMULATION FRAMEWORK

This section presents the simulation environment. First,
in section III-A, we introduce the gem5 arm_detailed
model, which configures the out-of-order model for ARM.
Then, in section III-B, we explain how the out-of-order model
was modified to simulate an in-order pipeline. Finally, in
section III-C, we show how to configure the arm_detailed
model to simulate in-order (Cortex-A8) and out-of-order (A9)
cores. The following presentation is based on the gem5 stable
version of June 2012 [12].

A. Overview of gem5

gem5 is a performance simulator which provides four CPU
models: Atomic Simple, Timing Simple, InOrder and O3. For
micro-architectural simulation, only the InOrder and O3 models
produce activity statistics of in-order and out-of-order pipelines,
respectively. Moreover, two types of simulation environment
can be used: System-call Emulation (SE), and Full-System
(FS). In the SE mode, most of the system calls are emulated
by passing them to the host operating system. On the other
hand, the FS mode simulates a bare-metal machine, then an

L2 shared

Core 1 Core N...

Fetch

Decode

Rename Issue Execution/Writeback Commit

Branch Predictor

Branch Target Buffer

Return Address Stack

Instruction Cache Int

FP

Instruction
Queue

Simple ALU

Complex ALU

FP/SIMD

Load Unit

Store Unit

Integer

Register

File

Data Cache

TLB

MMU

Memory System

O3 cpu model

FP

Register

File

Reorder

Buffer

Fig. 1. The arm_detailed configuration of gem5.

operating system must run to boot the machine and to support
the running applications.

For micro-architectural simulation with the ARM ISA,
only the O3 model is currently functional. The released
arm_detailed configuration simulates a multicore system
composed of out-of-order cores with a simple memory hierarchy.
Figure 1 presents the main components of this system.

a) O3 CPU model: The O3 CPU model simulates a
generic out-of-order pipeline based on physical-register-file
architectures, like the DEC Alpha design [13]. Seven pipeline
stages are modeled: fetch, decode, rename, issue, execute,
writeback and commit, but a variable number of stages can be
effectively simulated by changing the signal delays between
stages. The O3 model is highly configurable: for example, each
parameter of the branch predictor (tournament, based on Alpha
implementations [13]) can be configured. Other parameters
include pipeline stage widths, and the size of buffers such as
the instruction queue (IQ), reorder buffer (ROB), load/store
queues (LSQ) and translation lookaside buffers (TLB). The
execution stage is also highly flexible with variable number of
functional units. For example: Simple ALU, Complex ALU
(Mul/Div), FP/SIMD, Load and Store Units. Each unit accepts
one or more operation classes with configurable latency and
a pipelined flag1. Each operation class regroups one or more
instructions.

b) Memory hierarchy: The arm_detailed model
uses the Classic memory model. Two on-chip Data and
Instruction caches form the first cache level. An off-chip L2
cache is the last level, connected to the SimpleMemory model.
Stride prefetchers can be configured and added to any cache
level. The Classic memory model puts the focus on the pipeline
simulation, differently from the Ruby model that supports
configurable cache coherence protocols, providing a detailed
memory hierarchy simulation.

1In this version, the issue latency of operation classes is set to 1 to indicate
that the functional unit is pipelined, or greater than 1, otherwise.



B. Our approach for modeling an in-order pipeline with gem5

At the time of writing this paper, the InOrder CPU model
was not functional for the ARM ISA yet. Instead of porting
the current InOrder CPU model for ARM, we modified the
O3 model to issue in program order and to disable the rename
stage. First, we argue why this approach was chosen. Next,
we explain how the O3 model was modified, then we present
a qualitative explanation of the simulation precision of our
approach.

1) InOrder vs modified O3 model: The InOrder model
has a common simulation engine and architecture-dependent
supporting code, which is partially ported to ARM. In our
opinion, the InOrder model may not be adapted to simulate
current high-end microprocessors, due to the lack of associative
structures such as the IQ and LSQ, present in modern embedded
microprocessors. In addition, FP and SIMD instructions are
apparently not supported yet. On the other hand, the O3 model is
based on high-performance machines. In our opinion, modifying
the O3 model to simulate in-order cores of the Cortex-A series
is faster and more stable to implement, compared to bring-up
and enhance the InOrder model. However, the modifications to
issue instructions in-order and to cancel the register renaming
provide a cycle approximate in-order pipeline.

2) Modification of the gem5 O3 model: Ideally, to simulate
an in-order pipeline using an out-of-order model, structures
supporting out-of-order execution should be completely re-
moved. However, instead of removing these structures, which
can be complex, time-consuming and unstable, the original
pipeline stages were kept intact. In summary, we bring two
modifications over the original out-of-order pipeline:

• Issue in dispatch order;

• An extra register scoreboarding to disable register
renaming effects.

The fetch, decode, execute and writeback stages are not
modified. The commit will continue retiring instruction in
program order.

a) Issuing in program order: We modified the instruc-
tion scheduler so that we only allow the oldest instruction in
the instruction queue to issue if it’s ready. The only exceptions
to this rule are instructions that already requested a memory
access and are re-issuing. In this case, we allow them to be
issued again even if they are not the oldest instructions. This
happens, for example, with load instructions of uncacheable
data.

b) Disabling the rename stage: The register renaming
must be disabled, because it would incorrectly allow the con-
current execution of instructions that had register dependencies
avoided by renaming their destination registers. Then, to cancel
the effect of register renaming, an extra register scoreboarding
was implemented over the original model. As a consequence,
ready instructions are only issued if their source and destination
registers are not being modified by any issued instruction
under execution. Our register scoreboard only locks destination
registers, because we consider that source registers are read
during the first cycle of execution. Destination registers are
then unlocked when the instruction writebacks.

c) Out-of-order parameters: The parameters that only
exist in out-of-order pipelines should be configured properly to
simulate an in-order machine. Table I lists and describes these
parameters.

3) Functionality: Considering that we modified the in-
struction scheduler to only issue ready instructions respecting
two extra restrictions (issue in-order and respect register
dependencies), there is no reason that our approach would
lead to wrong results. In other words, every ready instruction
from the in-order pipeline point of view is always a ready
instruction from the out-of-order point of view. We tested
the correct execution of the model, by comparing the results
produced by benchmarks. No errors were detected.

4) Accuracy: Our modification of the gem5 O3 model to
simulate an in-order pipeline does not remove out-of-order
structures. These remaining structures impact the accuracy of
the simulator, albeit in a negligible way:

• We keep an “empty” rename stage. Nevertheless, we
can consider the rename stage as an additional decode
sub-stage.

• The commit stage continues managing the correct
execution in the pipeline, even if the vast majority
of the correct execution is insured by the issue in
program-order modification.

In the Section V, we provide results and analysis that
confirms the timing accuracy of the proposed approach.

C. Configuring gem5 to simulate Cortex-A processors

This section presents the configuration parameters of the
gem5 arm_detailed model to simulate Cortex-A8 and
Cortex-A9 cores, with the VFP extension.

1) System parameters: The ARM Cortex-A9 is a dual-issue
out-of-order pipeline with 8 to 11 stages [14], while the Cortex-
A8 is a dual-issue in-order pipeline with 13 stages [15]. The
main parameters of our models are summarized in Table II. The
core clock and cache sizes were based on the development kits
Snowball SKY-S9500-ULP-CXX series [16] and BeagleBoard-
xM [17], respectively. The cache and memory latencies are
typical values [18]. The cache line length is 32 Bytes in the
Cortex-A9 [19], but this version of gem5 only accepts 64
as length. Most of the other parameters were taken from
manuals and from the ARM website [20], [14], [19], [21],
[15], [22]. Unfortunately, there’s no official information about
the following parameters (in parenthesis, our sources if any,
otherwise we made an educated guess). For the Cortex-A9
model:

• L1 cache buffer sizes: miss status and handling register
– MSHR – and write buffer (gem5 default values).

• Branch predictor – BP – and branch target buffer –
BTB – parameters.

• ITLB and DTLB size.

• Number of IQ and ROB2 entries (default values).

2Accordingly to Li et al. [23], the Cortex-A9 implements a out-of-order
pipeline without a traditional ROB.



TABLE I. CONFIGURATION OF GEM5 O3 MODEL PARAMETERS1 WHEN SIMULATING A DUAL-ISSUE IN-ORDER PIPELINE

O3 model parameter Ideal value Chosen value Description
*ToRenameDelay
renameTo*Delay

iewToCommitDelay
commitTo*Delay

renameToROBDelay

0 1 The rename and commit (which includes the ROB) stages do not exist in an in-order pipeline, then
signal delays to and from them should be as small as possible.

numROBEntries
commitWidth
squashWidth

infinite 512

The ROB is an out-of-order structure that holds the information of instructions eventually executing
out-of-order. An in-order pipeline does not need such buffer, because correct program execution must
be insured before instructions writeback. To avoid the ROB stalling the pipeline, ideally there would
be an infinite number of entries and an infinite commit and squash bandwidth.

renameWidth infinite numROBEntries

With an infinite bandwidth, the rename stage would not stall the pipeline due to instructions waiting
to be renamed. In the O3 model, the renaming throughput is only limited by structures that receive
the renamed instructions in the following stages, then we set its bandwidth as the number of entries
in the largest structure.

dispatchWidth infinite numROBEntries
Same reasoning as renameWidth. The dispatch is between the rename stage and the following
structures, then it has to be configured with the same bandwidth as the rename stage to not stall
the pipeline.

numPhysIntRegs
numPhysFloatRegs infinite 44+numROBEntries

72+numROBEntries

In order to avoid stalls in the rename stage due to lack of physical registers, these parameters should
be set as large as possible. For a finite ROB, the maximum number of physical registers used is equal
the number of architectural registers plus the number of entries in the ROB.

1 To work properly, the out-of-order model needs two patches: issue in program order and disable register renaming.

• Number of LSQ entries.

• Pipeline stages depth (gem5 mailing-list3).

And for the Cortex-A8 model:

• L2 cache: MSHR and write buffer (default values).

• BP parameters.

• Pipeline stages depth.

2) The execution stage: The functional units were config-
ured as shown in Table III, which only includes the VFP
extension. The latency of instructions were obtained from
ARM manuals [19], [24], [21]. While in the Cortex-A9, the
VFP extension is pipelined for most instructions, the Cortex-
A8 VFP extension in not pipelined. Note that the pipelined
Advanced SIMD unit in the A8 can execute some single-
precision instructions faster than the VFP, but we did not
test this feature.

The execution stage of the in-order and out-of-order
pipelines is modeled with two and three pipelines, respectively.
Table IV shows the distribution of the functional units in their
execution stages.

3) Configuring the tournament branch predictor: gem5
models the tournament branch predictor. A local and a global
predictor are updated in parallel, and for each branch instruction,
a third predictor (the chooser) decides which one will be used.
Given that both Cortex-A9 and A8 have only the global history
branch predictor [20], [21], the configuration of the tournament
model was adapted. We set the local predictor with the smallest
possible size, to reduce its influence, but the chooser was kept
intact. The aim is that the local predictor, with a minute size,
will loose every prediction to the global one.

4) Micro-architectural differences: Compared to the O3
model, the two main differences of the Cortex-A9 are the
absence of FP register renaming [15] and the out-of-order
implementation without a traditional ROB [23]. Given that we
have no detailed information about its pipeline implementation,

3A suggestion is setting equal number of sub-stages, except the rename
stage, which is two times longer

TABLE II. PARAMETERS OF OUR GEM5 OUT-OF-ORDER AND IN-ORDER
CORE MODELS

Parameter Out-of-order In-order
(Cortex-A9) (Cortex-A8)

Core clocks 800 MHz 800 MHz

DRAM
Size 256 MB 256 MB

Clock 400 MHz 166 MHz
Latency1 65 65

L2

Size 512 kB 256 kB
Associativity 8 8

Latency1 8 8
MSHRs 11 16

Write buffers 9 8

L1-I

Size 32 kB 32 kB
Associativity 4 4

Latency1 1 1
MSHRs 2 1

L1-D

Size 32 kB 32 kB
Associativity 4 4

Latency1 1 1
MSHRs 4 1

Write buffers 16 1

Stride prefetcher Degree 1 N/A
Buffer size 8 N/A

Global BP Entries 4096 512
Bits 2 2

BTB entries 4096 512
Return address stack entries 8 8

ITLB/DTLB entries 64 each 32 each
Issue width 22 2

gem5 effective execution stage depth (wbDepth)3 8 6
Pipeline stages 8 13

Physical INT/FP registers 62/2564 556/5845

IQ entries 32 166

LSQ entries 8 each7 12 each6

ROB entries 40 5125

1 Latencies in core clock cycles.
2 We assume that the Cortex-A9 is dual-issue [14], although it may issue 4 instructions

in some conditions [15].
3 In gem5, wbDepth multiplied by the issue width represents the maximum allowed

number of in-flight instructions in the execution stage.
4 The Cortex-A9 does not rename FP registers [15]. The choice of the number of

physical FP registers is explained in section III-C4.
5 These structures do not exist in an in-order pipeline and the chosen values are

explained in section III-B2c.
6 We considered the corresponding structures in the NEON/VFP unit: one 16-entry

instruction queue, one 12-entry load queue [21]. We assume that it has a store queue
with 12 entries too.

7 The Cortex-A9 has a store buffer with 4 slots and probably at least a 4-entry load
queue (i.e., support for four data cache line fill requests) [20]. Without precise
information, these parameters were hence tunned in the simulator.



TABLE III. CONFIGURATION OF THE FUNCTIONAL UNITS (FUS) FOR INTEGER AND VFP INSTRUCTIONS

gem5 FU gem5 opClass Example of instructions
Out-of-order In-order
(Cortex-A9) (Cortex-A8)

Latency Pipelined Latency Pipelined
Simple ALU IntAlu MOV, ADD, SUB, AND, ORR 1 Yes 1 Yes

Complex ALU IntMult MUL, MLA 4 Yes 5 Yes

FP Unit1

SimdFloatAdd VADD, VSUB 4 Yes 10 No
SimdFloatCmp VCEQ, VCGE, VCGT, VCLE, VCLT 1 Yes 6 No
SimdFloatCvt VCVT 4 Yes 7 No
SimdFloatDiv VDIV 15 No 43 No

SimdFloatMisc VMRS, VMSR, VMOV, VABS, VNEG 1 Yes 4 No
SimdFloatMult VMUL, VNMUL 5 Yes 14 No

SimdFloatMultAcc VMLA, VMLS, VNMLA, VNMLS 8 Yes 22 No
SimdFloatSqrt VSQRT 17 No 40 No

Load/Store Unit MemRead LDR, VLDR 1 Yes 1 Yes
MemWrite STR, VSTR 1 Yes 1 Yes

1 Although we simulate only the VFP extension, in gem5, both VFP and Advanced SIMD instructions are regrouped under the SimdFloat*
operation classes.

TABLE IV. CONFIGURATION OF GEM5 EXECUTION STAGES1

Pipeline Functional unit(s)
Out-of-order (Cortex-A9) In-order (Cortex-A8)

1 Simple ALU Simple ALU, Complex ALU
2 Simple ALU, Complex ALU Simple ALU, FP Unit, Load/Store Unit
3 FP Unit, Load/Store Unit N/A

1 Table III describes the classes of instructions that each functional unit can execute.

we assume that these micro-architectural differences have a
small impact in the execution time. We considered that the
Cortex-A9 has a balanced pipeline, i.e. its structures are large
enough to sustain the pipeline width in the absence of stalls.
For example, to configure the FP renaming in gem5, we choose
a sufficient large pool of physical FP registers (256). Compared
to our in-order model, the Cortex-A8 has a considerable more
complex micro-architecture. While gem5 only simulates one
pipeline for all types of instruction (integer, FP and SIMD),
the integer and SIMD/FP pipelines are completely separated in
the Cortex-A8. SIMD and FP instructions have to go through
the integer pipeline until completion, before being decoded and
executed [21].

IV. EXPERIMENTAL SETUP

The main objective of our experiments is to evaluate the
accuracy of our gem5 in-order and out-of-order models. To do
so, we compared the execution time of benchmarks simulated
by gem5 and measured in software development kits (SDKs).
To insure a fair comparison, we ran the same binaries and
dynamic libraries in all platforms, and core frequencies were
fixed at 800 MHz.

A. Reference models

The out-of-order reference model is the Snowball SDK,
equipped with a dual Cortex-A9 processor [16]. The board
runs the Linaro 11.11 distribution with a Linux 3.0.0 kernel.

For the in-order reference model, we chose the BeagleBoard-
xM SDK, which has a processor with only one Cortex-A8
core [17]. The board runs a Linux 3.9.11 kernel with the
Ubuntu 11.04 distribution released by the gem5 website. We
insured that the NEON extension (which includes the VFP
unit) accesses data in the L1 data cache (by default it accesses
the L2).

B. Simulation models

Section III-C details the simulation models. The in-order
model is a Cortex-A8 core connected to a L2 cache, and its
parameters were based on the BeagleBoard-xM SDK. The
out-of-order model has a dual Cortex-A9 core connected to a
shared L2 cache, representing the Snowball board. Only the
VFP extension was tested.

C. Benchmarks

To evaluate the timing accuracy of the models, we selected
10 of the 13 benchmarks of PARSEC 3.0 [25], a modern suite
which covers several application domains. Three benchmarks
were not tested, because:

• Canneal: does not support ARM yet;

• Facesim: the only released input set takes more than
one minute to execute, which could take days to be
simulated in gem5;

• Raytrace: depends on X11 development libraries, which
were not available in the embedded environment;

To validate the gem5 Cortex-A9 model, we ran the bench-
marks with one and two threads (except Vips with three threads)
in order to evaluate the single and dual core behaviors. The A8
model was evaluated only with single-threaded benchmarks.

We used the Ubuntu 11.04 file system released by gem5
to natively compile the benchmarks in the Snowball with gcc
4.5.2. This file system together with the released Linux 2.6.38.8
kernel were used to boot the simulation models in the gem5
Full System mode.

The execution time was measured with the built-in bash
command time, whose resolution is the millisecond, and we
took the real measurements. In gem5, after booting, a script
waits 10 s to calm down the initialization processes before
running the benchmark under test. A similar procedure is carried
in the reference boards. The PARSEC suite offers six input
sets [25]. We chose the simsmall, which is adapted for micro-
architectural simulations.

V. RESULTS

This section first presents the accuracy evaluation of the
Cortex-A models compared to real hardware. Then, we analyse



TABLE V. COMPARISON OF THE EXECUTION TIME (SECONDS) OF
PARSEC BENCHMARKS EXECUTED IN THE GEM5 DUAL CORTEX-A9

MODEL AND THE SNOWBALL

Benchmark
Single thread Two threads1

SDK gem5 Error SDK gem5 Error
(%) (%)

INT
Dedup 2.65 2.58 -2.57 2.02 1.85 -8.36

Freqmine 4.95 4.30 -13.2 3.46 3.14 -9.30
x264 6.45 7.23 12.1 3.96 4.45 12.4

INT mean error -1.22 -1.74
INT mean absolute error 9.31 10.0

FP

Blackscholes 0.600 0.629 4.83 0.353 0.364 3.12
Bodytrack 2.62 2.41 -8.13 1.62 1.65 1.73

Ferret 2.80 2.73 -2.64 1.98 1.84 -6.68
Fluidanimate 3.10 2.98 -3.97 1.94 1.90 -2.07
Streamcluster 3.48 3.53 1.44 1.76 1.84 4.42

Swaptions 3.14 3.67 16.7 1.61 1.88 16.7
Vips 6.73 6.15 -8.66 3.76 3.44 -8.49

FP mean error -0.07 1.24
FP mean absolute error 6.62 6.17

Overall mean error -0.41 0.35
Overall mean abs. error 7.43 7.33

1 For Vips, we ran the benchmark with three threads in both platforms.

TABLE VI. COMPARISON OF THE EXECUTION TIME (SECONDS) OF
PARSEC BENCHMARKS EXECUTED IN THE GEM5 CORTEX-A8 MODEL AND

THE BEAGLEBOARD-XM

Benchmark SDK gem5 Error (%)

Integer
Dedup 3.40 3.75 10.5

Freqmine 5.76 4.90 -15.0
x264 6.50 6.71 3.18

INT mean error -0.43
INT mean absolute error 9.56

Floating-point

Blackscholes 1.86 1.72 -7.54
Bodytrack 7.78 7.40 -4.97

Ferret 7.60 6.64 -12.7
Fluidanimate 8.33 7.94 -4.68
Streamcluster 10.3 10.5 1.74

Swaptions 10.1 8.51 -15.8
Vips 14.5 13.9 -3.76

FP mean error -6.81
FP mean absolute error 7.30

Overall mean error -4.89
Overall mean abs. error 7.98

the behavior of the proposed in-order model. Finally, we
propose a modification in the execution stage to improve even
more the accuracy of our Cortex-A8 model.

A. Accuracy evaluation of the Cortex-A models

Table V and VI show the reported execution time of each
benchmark and the percentage errors of the Cortex-A9 and
Cortex-A8 models, respectively. The simulations took between
1 and 8 hours. In average, the Cortex-A9 model estimates the
execution time with an absolute error of only 7.4 %, ranging
from 1 to 17 %. The Cortex-A8 model performs as well as the
A9, in average, estimating the execution time with an absolute
error of 8.0 %, ranging from 2 to 16 %.

Even considering the generic modeling of gem5, these
magnitudes of error can be considered as good results for a
micro-architectural simulator. For example, two models of the
SimpleScalar simulator were compared to a real Alpha 21264
processor [26]. The sim-outorder, which models a generic
out-of-order pipeline, showed an average absolute error of 37 %,
going up to 77 %. The sim-alpha, which models the actual
chip, performed better with an average absolute error of 18 %,
going up to 43 %. For x86 platforms, PTLSim showed only 5 %
of timing error compared to the real AMD’s K8 architecture, but

the only benchmark considered was the rsync command found
in Linux systems [6]. Zesto was preliminarily validated against
Intel’s Merom micro-architecture, showing average absolute
errors between 5 and 6 %, although, as the authors noted, the
selected micro-benchmarks are too simple to fully evaluate
the timing accuracy of their simulator [9]. A more recent x86
simulator, McSimA+, was validate against an Intel Xeon E5540.
By comparing the result of a large number of Splash-2 and
SPECCPU2006 benchmarks, McSimA+ achieved an average
IPC absolute error of 15.1 %, going up to almost 40 % [27].

In our opinion, most of the timing errors comes from
the generic purpose of gem5 and the parameters incertitude.
We purposely chose the Cortex-A8 and A9 because they are
the only two microprocessors of the Cortex-A series whose
execution stage parameters are publicly available. Such official
information is absolutely useful to reduce the parameters
incertitude, but as explained in Section III-C4, these modern
processors have complex micro-architectures, and it’s not easy
to configure a generic model to simulate them.

B. In-order model behavior

1) O3 model parameters for in-order simulation: To insure
that the modified O3 model behaves as an in-order pipeline,
we verified that the values chosen in Table I, except the delays,
do not produce unwanted stalls in the pipeline. For example,
by looking at the gem5 statistics, we confirmed that the rename
stage does not lacks physical registers, because the counter
of physical registers limit reached (FullRegisterEvents)
was virtually zero4 in all benchmarks. In addition, we also
inserted warning messages in the code, for example, to tell
if instructions are issued out-of-order. In more detail, we
compare the fetch sequence number of the issuing instructions
to check that this number never decreases (except instructions
re-issuing, which are verified separately). All benchmarks issued
all instructions in-order.

2) Further improvements: We observed that memory or-
dering violations still happen, although, in the worst case,
Ferret had only 884 ordering violation among 700 million
memory references. After investigation, we found that even if
all instructions are issued and re-issued in-order, some loads
can receive a value before a preceding instruction stores data to
the same address. The out-of-order mechanism simply squashes
the violator (load) and the newer instructions, which is not
realistic for an in-order pipeline, because such events should
be detected and avoided before instructions writeback. Finally,
to better identify unwanted behaviors like this, we propose
the following verification. To simulate an in-order over an
out-of-order pipeline, ideally, after an instruction effectively
writebacks 5 it must not be squashed from the ROB (if so, the

4Only in the Freqmine benchmark, the FullRegisterEvents counter
was not zero. However, only 22 events out of 4.2 billion renamed operands
is negligible. This behavior indicates that we underestimated the maximum
number of physical registers used (Table I). Indeed, in the worst case, each
instruction in the ROB could have two destination registers.

5gem5 does not directly simulate data bypass between functional units. The
proposed solution is that instructions writeback just after computing the results,
respecting the result latency. By doing so, the depending instructions can issue
and read their inputs in the register file in the next cycle, just as if the result
was bypassed. For example, an ALU instruction has a result latency of one
cycle, after which the result is writtenback. But the integer pipeline in the
execution stage has more than one sub-stage, e.g. five in the Cortex-A8 [21],
then the effective writeback may occur five cycles after issuing.



Blackscholes

Bodytrack
Ferret

Fluidanimate

Streamcluster

Swaptions
Vips

0

0.5

1

1.5

2

2.5

3

0
5
10
15
20
25
30
35
40
45
50

VMOV NEON 
to ARM
Error 
reduction (%)

N
um

be
r 

of
 in

st
ru

ct
io

ns
 t

ra
ns

fe
rr

in
g 

da
ta

fr
om

 N
E

O
N

 t
o 

th
e 

A
R

M
 p

ip
el

in
e 

(%
)

E
rr

or
 r

ed
uc

ti
on

 (
%

)

Fig. 2. Correlation between the number of VMOV instructions transferring
data from NEON to the ARM pipeline and the error reduction obtained by
the introduction of delay penalties is such instructions (Cortex-A8 model).

writtenback values are lost, because the rename map will be
set to a previous state). Our proposal is to warn when such
events happen.

C. Modeling FP data transfer penalties of the Cortex-A8

The validation of our Cortex-A8 model shows that an out-
of-order model can be adapted to approximately simulate an
in-order pipeline with good precision. However, as Table VI
shows, in average, the gem5 Cortex-A8 model is faster than the
BeagleBoard-xM. Among FP benchmarks, 6 of 7 are estimated
with a faster execution time than the real board. In order to
explain this behavior, we therefore focused our analysis on the
FP benchmarks. We discovered that VMOV instructions have
latency penalties when data is transferred from NEON/VFP to
the ARM pipeline [21]. This means that the original execution
stage model in gem5 tends to be faster, because such penalties
are not modeled.

To confirm our hypothesis, gem5 was modified with the
VMOV instructions that move data from NEON to ARM
regrouped in a separate operation class. This new class has a
latency of 20 cycles and instructions can be issued back-to-back
(i.e., the functional unit is pipelined to those operations) [21].
Table VII compares the simulation error of the original gem5
model and our improved model, executing FP benchmarks. In
average, this modification reduced the simulation error of FP
benchmarks by 27 %. The graph is Figure 2 shows the absolute
percentage error reduction of our modification correlated with
the number of such VMOV instructions. The correlation is
not perfect, because the slowdown and in consequence the
error reduction depends on the relative place of such VMOV
instructions and the critical paths, for example. This improved
Cortex-A8 model, in average, estimates the execution time of
the ten benchmarks with an absolute error of 6.8 %, ranging
from 2 to 15 %.

VI. ARCHITECTURAL AND MICRO-ARCHITECTURAL
EXPLORATION

To illustrate the design space exploration capabilities of
gem5, we simulated the performance of two hypothetical dual

TABLE VII. FP BENCHMARK RESULTS OF THE IMPROVED CORTEX-A8
MODEL WITH THE EXECUTION STAGE MODELING DATA TRANSFER

PENALTIES FROM NEON TO THE ARM PIPELINE.

Benchmark Error (%) Abs. error reduction (%)Original model Improved model
Blackscholes -7.54 -3.88 48.6

Bodytrack -4.97 2.99 39.8
Ferret -12.7 -11.3 10.9

Fluidanimate -4.68 -3.48 25.6
Streamcluster 1.74 1.74 01

Swaptions -15.8 -13.4 14.8
Vips -3.76 2.02 46.2

Mean -6.81 -3.62 26.6Absolute Mean 7.30 5.55
1 Streamcluster had no improvement because only a negligible number of VMOV

instructions transferring data from NEON to the ARM pipeline are executed.

Cortex-A8 processors (the Cortex-A8 does not support multi-
core configurations [15]). In both processors, we configured
two Cortex-A8 cores using our improved model of Section V-C
connected to a shared L2 cache. The difference resides in the
FP pipeline: one model has the original non-pipelined VFP
unit, while the other has a pipelined version with the same
parameters as the Cortex-A9 VFP. This modified model offers
a more fair comparison between almost equivalent in-order and
out-of-order pipelines.

Table VIII shows the speedup of the dual over the mono A8
and the speedup of the dual A9 over the dual A8. In average,
the dual Cortex-A8 allows a speedup of 1.77 over its mono-core
version, achieving an almost perfect speedup in the Swaption
and Streamcluster benchmarks. The comparison of the out-of-
order dual A9 and the in-order dual A8 is more interesting: For
integer benchmarks, there is no significant speedup (between
4 and 6 percent is beyond the precision of our simulator),
which may be explained by the fact that small-latency integer
operations benefit less from out-of-order pipelines than long-
latency floating-point ones. For FP benchmarks, as expected,
the original non-pipelined VFP in the A8 leads to poor results
compared to the A9 equipped with a pipelined VFP, in average
executing FP benchmarks two and a half times slower. On the
other hand, an A8 equipped with the same VPF as in the A9
shows relatively better performance with an average slowdown
factor of 1.37, for FP benchmarks. This performance difference
comes not only from the dynamic scheduling capacity of the
Cortex-A9, but may also come from differences in their memory
systems: for example, slower memory frequency, smaller L2
cache and the blocking cache behavior in the Cortex-A8.

This experiment show how useful a micro-architectural
simulator can be. They allow researchers to explore the
architectural and micro-architectural design space, to test new
ideas and to simulate hypothetical or emerging hardware
implementations.

VII. CONCLUSION

In this paper, we detailed the simulation of in-order and
out-of-order pipelines with gem5. We presented a fast and
stable modification to simulate an in-order pipeline modifying
the out-of-order model. We showed how to configure Cortex-
A9 and Cortex-A8 cores and compared the execution time of
ten benchmarks with real hardware. In average, these models
estimate the execution time with absolute errors around 7 %



TABLE VIII. PERFORMANCE OF PARSEC BENCHMARKS EXECUTED
IN HYPOTHETICAL DUAL CORTEX-A81 PROCESSORS, COMPARED TO THE
SINGLE CORTEX-A8 MODEL1 AND THE DUAL CORTEX-A9 (SNOWBALL)

Benchmark2
Speedup of dual Speedup of
over mono A8 dual A9 over dual A8

(Original VFP3) Original VFP3 Same VFP as A93

INT
Dedup 1.76 1.06 1.11

Freqmine 1.40 1.01 1.01
x264 1.60 1.06 1.06

INT mean 1.59 1.04 1.06

FP

Blackscholes 1.87 2.70 1.37
Bodytrack 1.69 2.93 1.42

Ferret 1.83 1.86 1.19
Fluidanimate 1.79 2.32 1.30
Streamcluster 1.96 3.04 1.64

Swaptions 1.97 2.75 1.39
Vips 1.83 2.15 1.31

FP mean 1.85 2.53 1.37

Overall Mean 1.77 2.09 1.28
1 Based on the improved Cortex-A8 model of Section V-C
2 The mono-core A8 ran the benchmarks with one thread, while the dual-core

processors ran with two threads, except Vips with three.
3 The original VFP extension in the A8 is not pipelined, while in the A9 the VFP is

pipelined for most instructions.

and within 17 %. Similar simulators also extensively validated
show average absolute errors between 15 and 37 %. Our results
confirm the timing accuracy of the O3 model in gem5 and of
the proposed in-order simulator. We plan to send a patch of
the Cortex-A9 configuration to the gem5 community.

ACKNOWLEDGMENT

The authors would like to thank Alexandre Aminot, Vic-
tor Lomüller and anonymous readers for their reviews and
suggestions.

REFERENCES

[1] R. Kumar, K. I. Farkas, N. P. Jouppi, P. Ranganathan, and D. M. Tullsen,
“Single-ISA heterogeneous multi-core architectures: The potential for
processor power reduction,” in Proceedings of the 36th annual
IEEE/ACM International Symposium on Microarchitecture, ser. MICRO
36. Washington, DC, USA: IEEE Computer Society, 2003, pp. 81–.
[Online]. Available: http://dl.acm.org/citation.cfm?id=956417.956569

[2] N. Fournel, “Estimation et optimisation de performances temporelles
et énergétiques pour la conception de logiciels embarqués,” Ph.D.
dissertation, École Normale Supérieure de Lyon, 2007.

[3] A. Lukefahr, S. Padmanabha, R. Das, F. M. Sleiman, R. Dreslinski,
T. F. Wenisch, and S. Mahlke, “Composite cores: Pushing heterogeneity
into a core,” in Proceedings of the 2012 45th Annual IEEE/ACM
International Symposium on Microarchitecture, ser. MICRO ’12.
Washington, DC, USA: IEEE Computer Society, 2012, pp. 317–328.
[Online]. Available: http://dx.doi.org/10.1109/MICRO.2012.37

[4] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The gem5 simulator,”
SIGARCH Comput. Archit. News, vol. 39, no. 2, pp. 1–7, Aug. 2011.
[Online]. Available: http://doi.acm.org/10.1145/2024716.2024718

[5] D. Burger and T. M. Austin, “The SimpleScalar tool set, version 2.0,”
SIGARCH Comput. Archit. News, vol. 25, no. 3, pp. 13–25, Jun. 1997.
[Online]. Available: http://doi.acm.org/10.1145/268806.268810

[6] M. T. Yourst, “PTLsim: A cycle accurate full system x86-64 microar-
chitectural simulator,” in ISPASS 2007: IEEE International Symposium
on Performance Analysis of Systems and Software, IEEE Comp Soc.
IEEE COMPUTER SOC, 2007, Proceedings Paper, pp. 23–34.

[7] H. Zeng, M. Yourst, K. Ghose, and D. Ponomarev, “MPTLsim:
a simulator for x86 multicore processors,” in Proceedings of the
46th Annual Design Automation Conference, ser. DAC ’09. New
York, NY, USA: ACM, 2009, pp. 226–231. [Online]. Available:
http://doi.acm.org/10.1145/1629911.1629974

[8] A. Patel, F. Afram, S. Chen, and K. Ghose, “MARSS: a full
system simulator for multicore x86 CPUs,” in Proceedings of
the 48th Design Automation Conference, ser. DAC ’11. New
York, NY, USA: ACM, 2011, pp. 1050–1055. [Online]. Available:
http://doi.acm.org/10.1145/2024724.2024954

[9] G. H. Loh, S. Subramaniam, and Y. Xie, “Zesto: A Cycle-Level Simulator
for Highly Detailed Microarchitecture Exploration,” in ISPASS 2009:
IEEE International Symposium on Performance Analysis of Systems and
Software, IEEE; IEEE Comp Soc. IEEE COMPUTER SOC, 2009,
Proceedings Paper, pp. 53–64.

[10] A. Butko, R. Garibotti, L. Ost, and G. Sassatelli, “Accuracy Evaluation
of GEM5 Simulator System,” in 2012 7th International Workshop on
Reconfigurable and Communication-centric Systems-on-Chip (ReCoSoC),
Indrusiak, LS and Gogniat, G and Voros, N, Ed. IEEE, 2012,
Proceedings Paper.

[11] N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim, A. G. Saidi, and
S. K. Reinhardt, “The M5 simulator: Modeling networked systems,”
IEEE Micro, vol. 26, no. 4, pp. 52–60, Jul. 2006. [Online]. Available:
http://dx.doi.org/10.1109/MM.2006.82

[12] gem5.org. (2012, June) gem5 stable version of june 2012.
Tag: stable 2012 06 28. [Online]. Available: http://repo.gem5.org/
gem5-stable

[13] D. Leibholz and R. Razdan, “The Alpha 21264: A 500 MHz Out-of-
Order Execution Microprocessor,” in Proceedings of the 42nd IEEE
International Computer Conference, ser. COMPCON ’97. Washington,
DC, USA: IEEE Computer Society, 1997, pp. 28–. [Online]. Available:
http://dl.acm.org/citation.cfm?id=792770.793692

[14] ARM website. Cortex-A9 Processor. [Online]. Available: http:
//www.arm.com/products/processors/cortex-a/cortex-a9.php

[15] ARM, Cortex-A Series Programmer’s Guide, June 2012, version: 3.0.
[16] Calao Systems, SKY-S9500-ULP-CXX (aka Snowball PDK-SDK) Hard-

ware Reference Manual, July 2011, revision 1.0.
[17] BeagleBoard.org, BeagleBoard-xM Rev C System Reference Manual,

April 2010, revision 1.0.
[18] ARM, CoreLink Level 2 Cache Controller L2C-310 Revision: r3p3

Technical Reference Manual.
[19] ——, Cortex-A9 Technical Reference Manual, June 2012, revision: r4p1.
[20] ——, “The ARM Cortex-A9 Processors,” ARM White paper, 2009,

document Revision 2.0 Sept 2009.
[21] ——, Cortex-A8 Technical Reference Manual, May 2010, revision: r3p2.
[22] Texas Instruments, AM/DM37x Multimedia Device Silicon Revision 1.x

Technical Reference Manual, May 2010, version R.
[23] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and

N. P. Jouppi, “The McPAT framework for multicore and manycore
architectures: Simultaneously modeling power, area, and timing,” ACM
Trans. Archit. Code Optim., vol. 10, no. 1, pp. 5:1–5:29, Apr. 2013.
[Online]. Available: http://doi.acm.org/10.1145/2445572.2445577

[24] ARM, Cortex-A9 Floating-Point Unit Technical Reference Manual, June
2012, revision: r4p1.

[25] C. Bienia, “Benchmarking modern multiprocessors,” Ph.D. dissertation,
Princeton University, January 2011.

[26] R. Desikan, D. Burger, and S. W. Keckler, “Measuring experimental
error in microprocessor simulation,” in Proceedings of the 28th Annual
International Symposium on Computer Architecture, ser. ISCA ’01.
New York, NY, USA: ACM, 2001, pp. 266–277. [Online]. Available:
http://doi.acm.org/10.1145/379240.565338

[27] J. H. Ahn, S. Li, O. Seongil, and N. P. Jouppi, “McSimA+: A
manycore simulator with application-level+ simulation and detailed
microarchitecture modeling,” in Performance Analysis of Systems and
Software (ISPASS), 2013 IEEE International Symposium on. IEEE,
2013, pp. 74–85.

http://dl.acm.org/citation.cfm?id=956417.956569
http://dx.doi.org/10.1109/MICRO.2012.37
http://doi.acm.org/10.1145/2024716.2024718
http://doi.acm.org/10.1145/268806.268810
http://doi.acm.org/10.1145/1629911.1629974
http://doi.acm.org/10.1145/2024724.2024954
http://dx.doi.org/10.1109/MM.2006.82
http://repo.gem5.org/gem5-stable
http://repo.gem5.org/gem5-stable
http://dl.acm.org/citation.cfm?id=792770.793692
http://www.arm.com/products/processors/cortex-a/cortex-a9.php
http://www.arm.com/products/processors/cortex-a/cortex-a9.php
http://doi.acm.org/10.1145/2445572.2445577
http://doi.acm.org/10.1145/379240.565338

	Introduction
	Related work
	Simulation framework
	Overview of gem5
	Our approach for modeling an in-order pipeline with gem5
	InOrder vs modified O3 model
	Modification of the gem5 O3 model
	Functionality
	Accuracy

	Configuring gem5 to simulate Cortex-A processors
	System parameters
	The execution stage
	Configuring the tournament branch predictor
	Micro-architectural differences


	Experimental setup
	Reference models
	Simulation models
	Benchmarks

	Results
	Accuracy evaluation of the Cortex-A models
	In-order model behavior
	O3 model parameters for in-order simulation
	Further improvements

	Modeling FP data transfer penalties of the Cortex-A8

	Architectural and micro-architectural exploration
	Conclusion
	References

