A template attack against Verify PIN algorithms

Hélène Le Boudar, Thierno Barry, Damien Couroussé, Jean-Louis Lanet and Ronan Lashermes
Personal Identification Number (PIN) codes.

- Used to authenticate the user,
- in payment cards or SIM cards...
- Targets of choice for malicious adversaries.
- A limited number of trials.
Personal Identification Number (PIN) codes.

- Used to authenticate the user,
- in payment cards or SIM cards...
- Targets of choice for malicious adversaries.
- A limited number of trials.

Side Channel Analysis (SCA)

- SCA consists in observing some physical characteristics which are modified during the computation performed on the circuit.
- Most classic leakages are: timing, power consumption, electromagnetic emissions (EM) ...
- The main difficulty of the attack is to succeed with very few traces.
- Template attack is a kind of SCA, based on characterization.
1 Introduction

2 Verify PIN algorithm

3 Attack
 - Profiling phase
 - Attack phase

4 Results
 - Test bench
 - General results
 - Final attack

5 Conclusion
1. Introduction

2. Verify PIN algorithm

3. Attack
 - Profiling phase
 - Attack phase

4. Results
 - Test bench
 - General results
 - Final attack

5. Conclusion
Verify PIN algorithm

1: procedure VERIFY PIN(candidate PIN V)
2: counter = counter − 1
3: if counter > 0 then
4: status = COMPARISON(U, V)
5: status2 = COMPARISON(U, V)
6: if status ≠ status2 then
7: ERROR, device is blocked
8: else
9: if status = TRUE then
10: counter initialized at original value.
11: end if
12: end if
13: else
14: device is blocked
15: end if
16: return status
17: end procedure

- PIN code is an array of m bytes.
- True PIN: U,
- Candidate PIN: V,
- \(U \in \{0, 9\}^m \).
- 10^m different PIN codes.
- Countermeasure against fault attack: compare U and V twice.
Comparison of two PIN codes

1: procedure COMPARISON(candidate PIN V, true PIN U)
2: status = FALSE
3: diff = FALSE
4: fake = FALSE
5: for $b = 0$ to m do
6: if $U_b \neq V_b$ then
7: diff = TRUE
8: else
9: fake = TRUE
10: end if
11: if ($b = m$) and (diff = FALSE) then
12: status = TRUE
13: else
14: fake = TRUE
15: end if
16: end for
17: return status
18: end procedure

Countermeasure against timing attack: comparison between U and V has to be in a constant time.
1 Introduction

2 Verify PIN algorithm

3 Attack
 - Profiling phase
 - Attack phase

4 Results
 - Test bench
 - General results
 - Final attack

5 Conclusion
A template attack

2 phases

1. profiling phase,
2. attack phase.

The attacker can:
- obtain one trace on the targeted device;
- change the True PIN in her profiling device;
- obtain many traces on her profiling device.
1 Introduction

2 Verify PIN algorithm

3 Attack
 - Profiling phase
 - Attack phase

4 Results
 - Test bench
 - General results
 - Final attack

5 Conclusion
Step 1: Campaign on the profiling device

- Campaign is for one given byte b.
- The byte U_b of the True PIN takes all values k in $[0, 9]$ and the other bytes stay to zero.
- Bytes of Candidate PIN V are fixed to a chosen value v.
- For each (k, v) collect many traces: $M_{v,k} = \{x_k(i,j)\}$, i for trace, j for time.
Step 1: Campaign on the profiling device

- Campaign is for one given byte b.
- The byte U_b of the True PIN takes all values k in $[0, 9]$ and the other bytes stay to zero.
- Bytes of Candidate PIN V are fixed to a chosen value v.
- For each (k, v) collect many traces: $M_{v,k} = \{x_k(i,j)\}$, i for trace, j for time.

Step 2: Detection of points of interest.

Select the moment of computation of Comparison (relevant j).
Profiling phase

On the profiling device

Step 1: Campaign on the profiling device

- Campaign is for one given byte \(b \).
- The byte \(U_b \) of the True PIN takes all values \(k \) in \([0, 9]\) and the other bytes stay to zero.
- Bytes of Candidate PIN \(V \) are fixed to a chosen value \(v \).
- For each \((k, v)\) collect many traces: \(M_{V,k} = \{x_k(i,j)\} \), \(i \) for trace, \(j \) for time.

Step 2: Detection of points of interest.

Select the moment of computation of Comparison \((\text{relevant } j)\).

Step 3: Build of templates.

- Compute the covariance matrix \(S_{V,k} = \{sk(j, j')\} \), \(\frac{1}{n-1} \cdot (x_k - \overline{x}_k)^t (x_{k'} - \overline{x}_{k'}) \).
1 Introduction

2 Verify PIN algorithm

3 Attack
 - Profiling phase
 - Attack phase

4 Results
 - Test bench
 - General results
 - Final attack

5 Conclusion
Step 4: Campaign on the targeted device

- True PIN byte U_b is unknown, it is the target;
- Candidate PIN byte V_b is equal to v.
- Trace is a vector $T_v = \{x_j\}$.
On targeted device

Step 4: Campaign on the targeted device
- True PIN byte U_b is unknown, it is the target;
- Candidate PIN byte V_b is equal to v.
- Trace is a vector $T_v = \{x_j\}$.

Step 5: Confrontation between measurements
- Confront the trace T_v to the template matrix $S_{v,k}$.
- General formula in template attack:
 $$F_v(T_v | S_{v,k}, x_k) = \frac{1}{\sqrt{2\pi P \cdot |S_{v,k}|}} \cdot \exp \left(-\frac{1}{2} \cdot (T_v - x_k) \cdot S_{v,k}^{-1} \cdot (T_v - x_k)^\text{T} \right).$$
On targeted device

Step 4: Campaign on the targeted device
- True PIN byte U_b is **unknown**, it is the target;
- Candidate PIN byte V_b is equal to v.
- Trace is a vector $T_v = \{x_j\}$.

Step 5: Confrontation between measurements
- Confront the trace T_v to the template matrix $S_{v,k}$.
- General formula in template attack:
 \[
 F_v(T_v|S_{v,k},\bar{x}_k) = \frac{1}{\sqrt{2\pi p \cdot |S_{v,k}|}} \cdot \exp \left(-\frac{1}{2} \cdot (T_v - \bar{x}_k) \cdot S_{v,k}^{-1} \cdot (T_v - \bar{x}_k)^t \right).
 \]

Step 6: Discriminating guesses
- Return the guess k_v for which F_v is maximal for a given T_v.
- Rank the guesses k according to the value of $F_v(T_v, k)$.
Introduction

A template attack against Verify PIN algorithms

Verify PIN algorithm

Attack

- Profiling phase
- Attack phase

Results

- Test bench
- General results
- Final attack

Conclusion
A template attack against Verify PIN algorithms

Le Boucher et al.
Introduction

Verify PIN algorithm

Attack

Profiling phase

Attack phase

Results

Test bench

General results

Final attack

Conclusion
The True byte PIN:
\(U_b = 0 \)

The Candidate byte PIN:
\(V_b = 0 \)

The returned guess is clearly:
\(k = 0 \)

If \(U_b = V_b \),
The attack always succeeds.
The True PIN byte: \(U_b = 3 \).

The Candidate PIN byte: \(V_b = 0 \).

The returned guess is \(k = 3 \).

\(U_b \neq V_b \): The attack succeeds, not so clearly.
1 Introduction

2 Verify PIN algorithm

3 Attack
 - Profiling phase
 - Attack phase

4 Results
 - Test bench
 - General results
 - Final attack

5 Conclusion
Introduction

Verify PIN algorithm

Attack

Results

Conclusion

Final attack

1: \textbf{procedure} ATTACK (C the number of trials in the VERIFY PIN)
2: \hspace{1em} N = C - 1 // limitation of number trials.
3: \hspace{1em} v = 0
4: \hspace{1em} K = [0, 9]
5: \hspace{1em} \hat{k} = \max_{k \in K} (F_v(T_v, k)) // \hat{k} best guess with v.
6: \hspace{1em} \textbf{while} \ \hat{k} \neq v \ \text{and} \ N > 0 \ \textbf{do}
7: \hspace{2em} N = N - 1
8: \hspace{2em} K = K \setminus \{v\} // guess v is eliminated.
9: \hspace{2em} v = \hat{k}
10: \hspace{2em} \hat{k} = \max_{k \in K}^{-1} (F_v(T_v, k)).
11: \hspace{1em} \textbf{end while}
12: \hspace{1em} \textbf{return} \hat{k}
13: \textbf{end procedure}

- v is the value tested on the Candidate PIN: $V_b = v$.
- $F_v(T_v, k)$ function template of the attack.

\begin{enumerate}
\item Send candidate PIN with all bytes to 0.
\item Then test the PIN code returned by the first attack.
\item \textbf{Worst case}: in 8 trials, the PIN code is retrieved.
\end{enumerate}
Success rate

<table>
<thead>
<tr>
<th>number of traces:</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n = 100000$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 COMPARAISON</td>
<td>27.70</td>
<td>41.47</td>
<td>53.84</td>
<td>63.99</td>
<td>73.07</td>
<td>81.33</td>
<td>88.51</td>
<td>100</td>
</tr>
<tr>
<td>2 COMPARAISON</td>
<td>31.71</td>
<td>46.56</td>
<td>57.82</td>
<td>67.76</td>
<td>76.63</td>
<td>84.36</td>
<td>90.68</td>
<td>100</td>
</tr>
<tr>
<td>$n = 200000$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 COMPARAISON</td>
<td>29.28</td>
<td>44.27</td>
<td>56.79</td>
<td>67.41</td>
<td>76.66</td>
<td>83.91</td>
<td>90.68</td>
<td>100</td>
</tr>
<tr>
<td>2 COMPARAISON</td>
<td>32.72</td>
<td>49.52</td>
<td>61.96</td>
<td>72.05</td>
<td>80.49</td>
<td>87.53</td>
<td>93.23</td>
<td>100</td>
</tr>
<tr>
<td>$n = 400000$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 COMPARAISON</td>
<td>29.56</td>
<td>44.11</td>
<td>56.0</td>
<td>66.88</td>
<td>75.96</td>
<td>84.04</td>
<td>90.58</td>
<td>100</td>
</tr>
<tr>
<td>2 COMPARAISON</td>
<td>32.91</td>
<td>48.38</td>
<td>60.88</td>
<td>71.68</td>
<td>80.07</td>
<td>86.91</td>
<td>92.94</td>
<td>100</td>
</tr>
</tbody>
</table>

Success rate to retrieve a byte of a True PIN U_b according to the size n of the templates and the number and the choice of traces.
<table>
<thead>
<tr>
<th></th>
<th>Introduction</th>
<th>Verify PIN algorithm</th>
<th>Attack</th>
<th>Results</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Verify PIN algorithm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Attack</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Profiling phase</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Attack phase</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Results</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Test bench</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- General results</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Final attack</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Conclusion</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The first SCA attack with EM traces on Verify PIN algorithms.

To enter a PIN code, a user has a limited number of trials.

Therefore the main difficulty of the attack is to succeed with very few traces.

The PIN is retrieved in 8 trials at most!
The first SCA attack with EM traces on Verify PIN algorithms.

To enter a PIN code, a user has a limited number of trials.

Therefore the main difficulty of the attack is to succeed with very few traces.

The PIN is retrieved in 8 trials at most!

It becomes a new real threat, and it is feasible on a low cost and portable platform.

Some protections against fault attacks introduce new vulnerabilities.
The first SCA attack with EM traces on Verify PIN algorithms.

To enter a PIN code, a user has a limited number of trials.

Therefore the main difficulty of the attack is to succeed with very few traces.

The PIN is retrieved in 8 trials at most!

It becomes a new real threat, and it is feasible on a low cost and portable platform.

Some protections against fault attacks introduce new vulnerabilities.

Future works:
 - Find new countermeasures.
 - Test the attack on a real device (mobile phone or smart card).
Thank you for your attention!

Do you have any questions?