
Side-Channel Attacks

Damien Couroussé, CEA – LIST / LIALP; Grenoble Université Alpes
damien.courousse@cea.fr

ISSISP 2017 – Gif-sur-Yvette
2017-07-21

COMPILATION OF

COUNTER-MEASURES

CODE POLYMORPHISM

All rights reserved CEA

| 3

COGITO

Automated application of software countermeasures against
physical attacks

=> A toolchain for the compilation of secured programs

Countermeasures supported:
Fault tolerance, including multiple
fault injections

Fault detection

Control-Flow Integrity

Combined with integrity of
execution pathes at the granularity
of a single machine instruction

Polymorphism

LLVM: an industry-grade, state-of-
the art compiler (competitive with
GCC)

LLVM compiler

CEA
extensions

Legacy source
code, unsecured

Secured
machine code

User security
annotations

C
O

G
IT

O

© CEA 2017. All rights reserved | 21 July, 2017

| 4

CODE POLYMORPHISM

Code polymorphism: regularly changing the behavior of a (secured) component,
at runtime, while maintaining unchanged its functional properties, with runtime
code generation

Protection against physical attacks: side channel & fault attacks

polymorphism changes the spatial and temporal properties of the secured
code
Can be combined with other state-of-the-Art HW & SW Countermeasures

(patented techno.)

© CEA 2017. All rights reserved | 21 July, 2017

| 5

WORKING PRINCIPLE

Runtime code generation for embedded systems

Polymorphic code
generation lib.

AES 8
bits.c

COGITO

Polymorphic
instance of AES

Polymorphic
instance of AES

Polymorphic
instance of AES

Polymorphic
instance of AES

AES 8
bits.c

Binary image

Binary image
Polymorphic
code generator

Reference version:

Polymorphic version, with COGITO:

foo.c

foo.c

AES.cdg.c
Platform
compiler

Platform
compiler

Runtime code
generation

rand()

© CEA 2017. All rights reserved | 21 July, 2017

| 6

VARIABILITY MECHANISMS

• Random register allocation

• Semantic variants

• Instruction shuffling

• Noise instructions

• Execution of loops in random order

© CEA 2017. All rights reserved | 21 July, 2017

| 7

RANDOM REGISTER ALLOCATION

Greedy algorithm: each register is allocated among one of the
free registers remaining

Has an impact on:
The management of the context (ABI)
Instruction selection

© CEA 2017. All rights reserved | 21 July, 2017

| 8

SEMANTIC VARIANTS

Replace an instruction by a semantically equivalent sequence
of one or several instructions

Select the sequence in a list of equivalences

Examples:

© CEA 2017. All rights reserved | 21 July, 2017

| 9

INSTRUCTION SHUFFLING

Randomly reorder instructions

… but do not break the semantics of the code!
Defs – read registers
Uses – modified registers
Do not take into account result latency and issue latency
Special treatments for… special instructions. E.g. branch instructions

© CEA 2017. All rights reserved | 21 July, 2017

| 10

INSERTION OF NOISE INSTRUCTIONS

Noise instructions have no effect on the result of the program

Parametrable model of the inserted delay ~ program execution
time

Goal:
Maximize standard deviation σ
Minimize mean E

Can insert any instruction:
nop
Arithmetic (add, xor…)
Memory accesses (lw, lb, …)
Power hungry instructions

(mul, mac…)

Etc.

N: number of insertions
(E, σ) = f(N)
f depends on
- the noise model
- the generated code

© CEA 2017. All rights reserved | 21 July, 2017

| 11

IMPACT OF POLYMORPHISM ON 1ST ORDER CPA

Reference version:
unprotected AES-8

© CEA 2017. All rights reserved | 21 July, 2017

| 12

IMPACT OF POLYMORPHISM ON CPA

Impact of adding a small
variability:
Visible temporal dispersion of
information leakage

© CEA 2017. All rights reserved | 21 July, 2017

| 13

IMPACT OF POLYMORPHISM ON CPA

Reference implementation

Distinguish threshold = 39 traces Distinguish threshold = 89 traces

Polymorphic version,

code generation intervall: 500

Effect of the code generation interval

© CEA 2017. All rights reserved | 21 July, 2017

| 14

IMPACT OF POLYMORPHISM ON CPA

Polymorphic version

code generation interval: 20

Polymorphic version,

code generation intervall: 500

Distinguish threshold > 10000 traces Distinguish threshold = 89 traces
© CEA 2017. All rights reserved | 21 July, 2017

| 16

AUTOMATED APPLICATION OF POLYMORPHISM

Automated application using LLVM
Declaration of polymorphism with a source code annotation
/* unsecured */ /* secured */

#pragma polymorphic (…)
void AES_encrypt(…) void AES_encrypt(…)
{ /* … */ { /* … */
Configurable levels of polymorphic transformations => security/performance tradeoff

Nature of the code transformations: random allocation of registers, semantic variants,
instruction shuffling, insertion of noise instructions.
Degree of polymorphic variability inserted

© CEA 2017. All rights reserved | 21 July, 2017

Polymorphic code
generation lib.

AES 8
bits.c

COGITO

Polymorphic
instance of AES

Polymorphic
instance of AES

Polymorphic
instance of AES

Polymorphic
instance of AES

Binary image
Polymorphic
code generator

foo.c

AES.cdg.c
Platform
compiler

Runtime code
generation

rand()

| 17

AUTOMATED APPLICATION OF POLYMORPHISM

Components evaluated: ciphers, hash functions, simple authentication, random generated codes

Automated application using LLVM
Declaration of polymorphism with a source code annotation
/* unsecured */ /* secured */

#pragma polymorphic (…)
void AES_encrypt(…) void AES_encrypt(…)
{ /* … */ { /* … */
Configurable levels of polymorphic transformations => security/performance tradeoff

Nature of the code transformations: random allocation of registers, semantic variants,
instruction shuffling, insertion of noise instructions.
Degree of polymorphic variability inserted

© CEA 2017. All rights reserved | 21 July, 2017

| 18

SECURITY EVALUATION

Polymorphism is a hiding countermeasure against side-channel attacks

Does not remove information leakage; reduces SNR only
However, information leakage is sufficiently blurred such that it is not
found in observation traces, with a confidence level of 99.999%

Configurable level of polymorphism for security-performance trade-offs

High variabilityMedium variabilityLow variabilityreference

Non-specific t-test

Attack complexity increasing

© CEA 2017. All rights reserved | 21 July, 2017

TAKE HOME MESSAGES

| 20

TAKE HOME MESSAGES

• Physical attacks are currently the most effective way to break
cryptography

• Also applicable to other classes of applications

• Side-channel attacks

• Secured products involve a combination of hiding and masking
protections

• Advanced attacks use a combination of side-channel and fault injection
attacks

• Do not trust the compiler, unless it is specifically designed for security
purposes

• You can workaround compiler optimisations,
• but this is tricky, and fragile

• Even if the compiler is specifically designed for security purposes, do not
trust the compiler

• A security compiler is not enough if used alone

© 2017 Damien Couroussé, CEA France. Distributed under CC Attribution License | 21 July, 2017

Centre de Saclay
Nano-Innov PC 172

91191 Gif sur Yvette Cedex

Centre de Grenoble
17 rue des Martyrs

38054 Grenoble Cedex

Side-Channel Attacks

Damien Couroussé, CEA – LIST / LIALP; Grenoble Université Alpes
damien.courousse@cea.fr

ISSISP 2017 – Gif-sur-Yvette
2017-07-21

