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Connected Healthcare 
Healthcare is facing one of its major turning points in decades. Connected healthcare offers a way and will be an 

effective tool to address the needed reorganization of our health system. 

After penetrating the consumer market, the digital revolution and its related IoT (Internet of Things) concept is rapidly 

changing health models. 

The Internet of Medical Things (IoMT) was born. 

Analysts 'Yole Development' estimate that today there are more than 45 million IoMT devices and that the market will 

offer more than 235 million in 2020 
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3 Attacks On Medical Devices 

 

Originally from “Cybersécurité des dispositfs médicaux”, by Florian Pebay Peyroula, CEA, Medi’Nov 2018 



Security of IoMT: where are we?  4 

Authenticity 

Connected medical devices imply:  

• New attack vectors appear 

• Attack surface is much wider 

• Need to ensure end-to-end security 

 

EU regulations have appeared:  

• IEC 62351-10, section 6   

• GDPR 

 

Need to follow these regulations:  

Technical innovation to deal with new 

security threats and risks. 



SERENE-IoT: Project Goal 
 

SERENE-IoT addresses the needs of patients remotely followed by 

professional caregivers by developing  advanced smart e-health IoT devices 

and architecture in Europe. 

• The core values of the project are : 

• High healthcare quality services 

• High level of trust (Security, Safety, Privacy, Robustness) 

• Efficient execution of requested operations and tasks 

• Interoperable and compatible systems 

• Solutions at much lower cost than the traditional care currently provided 
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SERENE-IoT : Outcomes 

SERENE-IoT will develop 3 medical clinical prototypes addressing 3 medical challenge domains: 

 

 

 

 

 

 

For each medical devices, SERENE-IoT will provide : 
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First Low-power Medical IoT Module 

validated with 2 class IIx medical devices 

Domain 1: Remote Healthcare 

   moving care services from hospital to home  

Domain 3: Fall Prevention/Detection 
 

Fully wireless insole for Fall 

Detection + Risk Monitor  

 First Low-power Mobile Detector for 

MRSA i.e. antibiotic resistant bacteria 

Domain 2 : Early detection  
of Methicillin-resistant bacteria 

Evaluated Clinical Prototypes 

Multi-centric Clinical Investigation Plans 

IoT System Evaluation 
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A Tentative Generic IoMT Architecture 8 
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Security of the IoMT Chain 

This presentation will focus on security for:  

• The IoMT nodes 

• The mobile application 

We focus on Side-Channel Attacks in the sense of Spreitzer2018:  

“Side-channel attacks do not exploit specific software vulnerabilities of the OS or any specific library, but 
instead exploit available information that either leaks unintentionally or that is […]published for 

benign reasons in order to infer sensitive information indirectly.” 
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Security of the IoMT Chain 10 

Local: the attacker has a physical access to 

the HW platform, can observe some physical 

phenomena 

Vicinity: eavesdrop target’s communication 

channels 

Remote: attacker only relies on execution of 

code on the target 

Power Analysis 

EM/Laser Fault 

Injection 

Net Traffic 

Analysis 

Wi-Fi signal mon. 

Cache-attacks 

Row-hammer 

By Dsimic - Ow n work, CC BY-SA 4.0, 

https://commons.w ikimedia.org/w /index.php?

curid=38868341 

Data Usage Stats 



Security of the IoMT Chain 11 

Passive: only observe leaking information  Active: influence behavior of target 
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Logical: exploit software property Physical: exploit hardware property 
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Security of IoMT Devices 
Assets 

• Data (patient, institution, provider) 

• Device firmware and configuration 
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(Security) Risks 

• Data theft 

• IP theft 

• Denial-of-Service 

 

Existing Counter-Measures 

• HW: secure elements, shielding 

• SW: masking, hiding, obfuscation,  

 

Local attack 
Remote attack 

Vicinity attack 
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Mobile Device 
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Local Attacks on Mobile Platforms 16 

Demonstrated, accessible attacks:  

 Electro-Magnetic Analysis to retrieve AES key 

[Genkin 2016] 

 Power Glitching to create SW faults [NewAE 2016, 

O’Flynn 2016] 

 EMFI to skip instructions [Riviere  2015, Ordas 2017] 

 NAND Mirroring to hard reset and brute-force 

passwords [Skorobogatov 2015] 

Hard or not-demonstrated attacks: 

 Power-Analysis Attacks 

 Clock Glitching 

 Laser Attacks 
[Genkin 2016] 

[O’Flynn 2016] 

[Skorobogatov 2015] 



Vicinity Attacks on Mobile Platforms 17 

 Network Analysis to fingerprint applications [Conti 2016a, Stöber 2013] 

 

 USB power analysis to infer identity or visited websites. [Yang 2017, Conti 2016b] 

 

 WiFi signal monitoring to detect screen patterns, eg unlock patterns via a notebook  
 connected to the same « hotspot » [Ali 2015, Zhang 2016, Li 2016] 

 

 Network traffic alteration to increase performance of website fingerprinting [He 2014] 



Remote Attacks on Mobile Platforms 18 

 Take advantage of Linux-inherited procfs leaks  to :  

 Observe application’s memory footprint and infere browsing behaviors, application 

transitions [Jana 2012, Chen 2014]  

 Observe app’s context switches and infer finger movements [Simon 2016, Diao 2016] 

 
 Observe and force system’s page deduplication to fingerprint visited website.  

 

 Micro-architectural (cache) attacks measure cache access times to infer encryption 

keys, finger movement, etc. [Ge 2016, Szefer 2016] 

 
 RowHammer : well-chosen memory writes change state of adjacent « logically protected » 

celles [VanDerVeen 2015, Kim 2014, Seaborn 2015, Gruss 2016] 

 

 Differential Computation Analysis : observe memory accesses of White-box protected 

Crypto functions to deduce encryption key [Bos2016] 
 

 And of course … Reverse-engineering 
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SERENE-IoT: Expected Contributions 
Security Requirements and Best Practices 
• [SGS-TÜV] Compare existing security requirements with new threats and propose best practices for 

IoMT Security (Risk Analysis and Evaluation, Requirements, Threats <-> Countermeasures) 
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HW-level Security 
• [LCIS] IoMT-device extensions against memory 

corruptions and hw attacks 
• [STMicro] Develop and validate new µ-controller for 

sensitive firmware isolation 

SW-level Security 
• [IDEMIA] White-box cryptography 

• [CEA] Combine code polymorphism with program encryption 
• [Orange] Blockchain to implement consent management 



Conclusion 
• IoT is reaching medical devices and applications 

• The use of open platforms (smartphone) introduces news risks:  

• Device is used in un-controlled environment 

• Unknown applications are executed concurrently on the same platform 

• Many attack vectors 

• We need to guarantee end-to-end security by-design 

• SERENE-IoT partners study:  
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• Assets and risk identification following and extending ISO/IEC 27005:2011, 

Annex A and IEC-TR 80001-2-1:2012, Annex D 

• HW protections against physical attacks 

• SW protections against attacks on mobile applications 

• Use of Blockchain to implement consent management 
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