

1 101 0 01 0 1 Ó

ON THE APPLICABILITY OF BINARY CLASSIFICATION TO DETECT MEMORY ACCESS ATTACKS IN IOT

C&ESAR 2018- Rennes | CEA Leti | KERROUMI Sanaa | 08/11/18

SOMMAIRE

loT node

- **2** Related works
- **3** Problem statement
- 4 Proposed methodology
- **5** Results
- **6** Take out and lessons learned

• Internet Of Things

" The interconnection via the internet of computing devices embedded in everyday objects enabling them to communicate"

- The "thing" in IoT can be anything and everything as long as it has a unique identity and can communicate via the internet
 - Sensors, actuators or combined sensor/actuator
 - Limited capabilities in terms of their computational power, memory, energy, availability, processing time, cost, ... → limits their abilities to handle encryption or other data security functions
 - Designed to disposable → updates/security patches may be difficult or impossible.
 - Designed to last for decades
 Any unpatched vulnerabilities will stay for very long

• A foothold in the network (e.g, IoT goes nuclear, thermometer in the fish tank attack)

Ronen, Eyal, et al. "IoT goes nuclear: Creating a ZigBee chain reaction." Security and Privacy (SP), 2017 IEEE Symposium on. IEEE, 2017.

Anatomy of a **Thing**

EDGE-NODE VULNERABILITIES: WHAT COULD POSSIBLY GO WRONG?

Illustration: J. D. King

leti

Ceatech

Leti EDGE-NODE VULNERABILITIES: WHAT COULD POSSIBLY GO WRONG?

- Attack modes:
 - Software attacks
 - Side channel attacks
 - Physical attacks
 - Network attacks
- Why are we interested in the memory access attacks?
 - It is particularly hard to fake or hide malicious tasks memory accesses
 - It offers a great view on what's going on inside the device
 - Alluring target for the attacker
 - Control the node
 - Read encryption keys or protected code
 - ...

EXISTENT COUNTERMEASURES: PREVENT VS PROTECT

Fuses and flash readout protection

- <u>Pros</u>
 - Inexpensive
 - Efficient
 - Easy to implement
- <u>Cons</u>
 - Mostly set on level that permits access to memory (post deployment upgrades)

Encryption

- <u>Pros</u>
 - Preserve privacy and confidentiality
 - Convenient
- <u>Cons</u>
 - Expenses
 - Compatibility
 - Encryption keys
 - Widespread security compromise

Detection

- <u>Pros</u>
 - Proactive
 - Scalable
 - Pervasive
 - Great 1st line of defense
- <u>Cons</u>
 - False Positives
 - Leak
 - Mimicry attacks

R&W: MEMORY DETECTION (1/2)

• Memory heat map

- Idea: profiling memory behavior by representing the frequency of access to a particular memory region (regardless of which component accessed it) during a time interval. The MHM is then combined with an image recognition algorithm to detect any anomalies.
- Strengths:
 - system wide anomalies detection (not just malicious ones)
 - can be used in real-time embedded systems
- Limitations :
 - expensive to compute: need to store several images of nominal MHM
 - wrong architecture (Config3 and higher)

Yoon, Man Ki, et al, "Memory heat map: anomaly detection in real-time embedded systems using memory behavior". In Design Automation Conference (DAC), 2015 52nd ACM/EDAC/IEEE (pp. 1-6). IEEE.

R&W: MEMORY DETECTION (2/2)

System call distribution

- Idea : learn the normal system call frequency distributions, collected during legitimate executions of a sanitized system, combined by a clustering algorithm (k-means). If an observation, at a run time, is not similar to any identified clustered. The observation is doomed malicious
- Strengths:
 - simple
- Limitations
 - Require an OS
 - need a throughout training
 - no adaptation of centroids (any change even if nominal would be flagged as malicious)
 - application to be monitored need to be very deterministic
 - definition of cut off line influence the FPR and detection rate

Figure 3: System call frequency distributions for $S = \{s_1, s_2\}$ and clusters. The gray-colored objects are SCFDs in the training set. Each star-shaped point is the centroid of each cluster. The ellipsoid around each cluster draws its cutoff line.

Yoon, Man-Ki, et al. "Learning execution contexts from system call distribution for anomaly detection in smart embedded system." *Proceedings of the Second International Conference on Internet-of-Things Design and Implementation*. ACM, 2017.

PROBLEM STATEMENT

- Existent detection solutions are:
 - Not directly related to memory access attacks
 - Too expensive to compute
 - Used features in detection are either hard or impossible to acquire for constrained node (e.g., hardware performance counters, control flow, instruction mix, etc.)
- Analyze the effectiveness of binary classifiers combined by simples features to detect memory access attacks in the context of a low cost IoT node

• 2 phases' methodology:

- Design: performed during the design of the node to build the detector
- Operation: the detector in operation

• In this presentation we will focus on the design part of the detector

10 seconds / wake up signal

IN MORE DETAILS

Processor/ memory trace Feature extraction & selection Machine learning method Evaluation

and trade-

offs

Raw data: memory access log

- Timestamp
- Accessed address
- Data manipulated
- Type of data
- Flag to indicate if the access is nominal or suspicious

Features – computed each time window

 Number of memory reads, number of memory accesses, cycles between consecutive reads, address increment, number of "unknown" (firstencountered) addresses, amount of read/accessed data ...

0000000000	READ32	00000018 -> 00000003	
0000000000	WRITE8	000008f1 <- 00	
0000000001	READ32	00000013 -> 00000003	
0000000001	UDITUS	MAGARELL JAVA3	
0000000000	WRITE8	000008f2 <- 01	
0000000000	READ32	00000000 -> 00000000	
0000000019	READ32	0000004 -> 00000000	
0000000041	READ32	0000008 -> 00000000	
0000000065	READ32	0000000c -> 00000000	
01010101010101018184	READ32	00000010 -> 41800400	
0000000111	READ32	00000014 -> 41980000	
0000000134	READ32	00000018 -> 00000003	
0000000157	READ32	0000001c -> 00000000	
0000000180	READ32	00000020 -> 00000000	
0000000203	READ32	00000024 -> 00000000	
0000000226	READ32	00000020 -> 00000000	
0000000249	READ32	0000002c -> 00000000	
0000000272	READSZ	00000030 -> 00000000	
0000000295	READ32	00000024 > 00000000	_
0000000318	READ32		i
0000000341	READ32		ł
0000000364	READ32	000000	
0000000387	READ32	00000044 -> 00000000	
0000000411	READ32	00000048 -> 00000000	
0000000434	READ32	0000004c -> 00000000	
0000000457	READ32	00000050 -> 00000000	
0000000474	READ32	00000054 -> 00000000	
00000000000000	READSZ	0000043a -> 00000000	
0000000544	READ32	0000043e -> 00000000	
0000000567	READ32	00000442 -> 00000000	

- Classic dump (CD): basic memory dump require minimal effort from the attacker:
 - Attacker reads the entire memory in a contiguous way, the memory reads are spaced regularly in time and memory space

Attacker assumed to be aware of the presence of some security monitor \rightarrow avoid obvious change in the memory patterns of the device

• Dumping in bursts (DB):

- The memory is read in bursts, the accessed addresses are still contiguous but the time step between two consecutive reads is incremented by constant (BD(cts)), linearly (BD(lin)) or randomly (BD(rand))
- Dump in non contiguous way (NG)
 - The address increment between two consecutive reads is incremented by constant (NG(cts)), linearly (NG(lin)) or randomly (NG(rand))

TRAINING & TESTING DATASETS

Number of memory read per time window

dataset	Training	Testing
Experi ment1	Nominal+ CD	DB and NG
Experi ment 2	 (1) Nom+(CD+NG+BD) (2) Nom+(CD+NG) (3) Nom+(CD+BD) 	(1) Nom+ (CD+NG+BD)* (2) Nom+BD (3) Nom+ NG

EXTRACTED FEATURES

• <u>Nread</u>: number of reads per time interval

Туре

Nominal Attack

- Inc: number of address increment per time interval
- <u>Time2Reads</u>: average time elapsed between two consecutive reads in time interval
- <u>NmemAcc</u>: number of memory access per time interval
- <u>UnknownAd</u>: number of unknown addresses accessed during a time interval

Processor/ memory trace Feature extraction & selection Classifiers Evaluation and tradeoffs

leti

Clatech

- Let $X = \{x_1, ..., x_n\}$ be our dataset and let $y_i \in \{1, -1\}$ be the class label of x_i
- The decision function (f) assign each new instance a label based on prior knowledge gathered during the training
 - List of classifiers included in the analysis
 - K nearest neighbor, Support vector machine, decision tree, random forest, naïve Bayes, linear discriminant analysis and quadratic discriminant analysis

- Assumption:
 - Features are independent
- Intuition:
 - Given a new unseen instance, we (1) find its probability of it belonging to each class, and (2) pick the most probable.

LINEAR DISCRIMINANT ANALYSIS

- Assumption :
 - Every class distribution is Gaussian and the covariance matrices are identical

Intuition

$$\hat{\delta}_{k(x)} = x^T \Sigma^{-1} \hat{\mu}_k - \frac{1}{2} \hat{\mu}_k^T - \hat{\mu}_k + \log(\hat{\pi}_k)$$

- $\hat{\delta}_{k(x)}$ is the estimated discriminant score that the observation will fall in the k^{th} class based on the value of the predictor variable x
- \hat{u}_k is a class-specific mean vector, and Σ is a covariance matrix that is common to all *K* classes
- $\hat{\pi}_k$ is the prior probability that an observation belongs to the k^{th} class
- An observation will be assigned to class k where the discriminant score $\hat{\delta}_{k(x)}$ is the largest,

QUADRATIC DISCRIMINANT ANALYSIS

g

- Assumptions
 - Class distribution is Gaussian but with different covariance matrices
- Intuition

$$\hat{\delta}_{k(x)} = x^T \Sigma^{-1} \hat{\mu}_k - \frac{1}{2} \hat{\mu}_k^T - \hat{\mu}_k + \log(\hat{\pi}_k)$$

- $\hat{\delta}_{k(x)}$ is the estimated discriminant score that the observation will fall in the k^{th} class based on the value of the predictor variable x
- \hat{u}_k is a class-specific mean vector, and Σ is a covariance matrix that is common to all *K* classes
- $\hat{\pi}_k$ is the prior probability that an observation belongs to the k^{th} class
- an observation will be assigned to class k where the discriminant score $\hat{\delta}_{k(x)}$ is the largest,

K NEAREST NEIGHBOR KNN

- Assumption:
 - Data have a notion of distance (data are in a metric space)
- Intuition:
 - Lazy learner → store all the training data and for every new incoming new observation, the algorithm will try to find the k nearest neighbor and do a majority voting

- Assumption :
 - None
- Intuition
 - Decompose a complex decision into a union of several simpler decision

NANOELEC.

- Assumption :
 - None
- Intuition
 - a collection or ensemble of simple tree predictors, each capable of producing a response when presented with a set of predictor values.

Random Forest Simplified

SUPPORT VECTOR MACHINE

- Assumption
 - Linear SVM: the decision boundary is linear
- Intuition:
 - The decision boundary should be as far away from the data of both classes as possible
 - → We should maximize the margin $m = \frac{1}{||w||}$
 - This maximum-margin separator is determined by a subset of the data points (support vectors).

 \rightarrow It will be useful computationally if only a small fraction of the data points are support vectors, because we use the support vectors to decide which side of the separator a test case is on.

SUPPORT VECTOR MACHINE : SOFT MARGIN

leti

ceatech

SUPPORT VECTOR MACHINE : KERNEL SVM

Projection to higher dimensional space where we can find a linear separator

Leti KERNERLSVM

The final classification rule is quite simple: $f(x_{tes}) t = sig \ ^{n}b + \sum_{s \in SV} \alpha_{s} y_{s} K(x_{tes}, x_{s}))$ The set of support Lagrange parameter vectors

- All the cleverness goes into selecting the support vectors that maximize the margin and computing the weight to use on each support vector.
- We also need to choose a good kernel function and set the parameters of the used kernel
- Popular kernels :
 - polynomial of a degree d $K(x_i, x_j) p = (x_i^T x_j + 1)^d$
 - radial basis function $K(x_i, x_j) = \exp((-\gamma ||x_i x_j||^2))$

HOW CAN WE BUILD THE DETECTOR ? TRAINING ON CLASSIC DUMP ATTACK

leti

ceatech

EVALUATION METRICS

Processor/ memory trace Feature extraction & selection Classifiers Evaluation and tradeoffs

• False positive rate: number of false alarms generated by the classifier R

$$FP = \frac{FP}{FP + TN}$$

• False negative rate: number of miss detection by the classifier

$$FNR = \frac{FN}{FN+TP}$$

• **Precision:** is a measure of a classifiers exactness

$$PP = \frac{TP}{TP + FP}$$

- Leakage: number of bytes leaked before the classifier detects
- Cost
 - Memory footprint of the classifier (in bytes)
 - Computation (number of basic arithmetic operation needed to classify one instance)

Principle

- In order to compare the computation cost in predicting the label of one instance for each classifier, we decomposed the learnt decision function of each classifier to basic arithmetic operations (additions, subtraction, comparison, multiplications, square root; exponential and divisions)
- The memory cost is computed by calculating the number of variables needed by each classifier

Classifier	Add(+)/Sub(-)/comparison	Mul (×)	Sqrt()	Exp()	Div		
LSVM	$(d+1)n_{s}-1$	$(d+2)n_{s}$	0	0	0		
RSVM	$(d+1)n_s$	$(d+3)n_{s}$	0	n_s	n_s		
KNN	$2n(d+1) - 2 \times k$	$n \times d$	n	0	0		
LDA	d	d	0	0	0		
QDA	$d^2 + d$	$d^{2} + 2 d$	0	0	0		
Naïve Bayes	n _c	2d	d	d	2 <i>d</i>		
Random Forest	$n_tre (h^e+1)$	0	0	0	0		
Decision Tree	h	0	0	0	0		
d: number of features n _s : number of support vectors							

n: number of observations in training dataset

n_c: number of classes

n_{tree}: number of trees in the random forest

k: number of neighbors

h: depth of the tree

DETECTION PRECISION & LEAKAGE OF CLASSIFIERS TRAINED ON CLASSIC DUMP

leti

Ceatech

DETECTION PRECISION & LEAKAGE OF CLASSIFIERS TRAINED ON VARIANTS DUMPS

leti

Ceatech

CLASSIFIERS PERFORMANCE (TRAINED ON CLASSIC DUMP)

leti

CLASSIFIERS PERFORMANCE (TRAINED ON DUMP VARIANTS)

Trained on classic dump

leti

ceatech

Trained on dump variants

TAKE OUT AND NEXT STEP ...

- Take out:
 - Binary classifiers are a great choice for low cost detectors
 - Diversifying the training dataset can increase the accuracy of the detection but that comes at the cost of the implementation complexity
 - Even when trained on limited examples of attacks binary classifiers were able to detect efficiently (few bytes leakage and detection accuracy around 90%)
- Next step
 - Implementation on hardware
 - Exploration of other types of attacks
 - Evaluation of mimicry attack cost to evade the detection

Q&A

Contact us for more details: Sanaa.kerroumi@cea.fr Anca.Molnos@cea.fr Damien.Couroussé@cea.fr

One week later ... 1 don't care! 1 We used horizontal don't need to use escalation and have Your software was safe coding access to all your hacked! We have techniques in this company servers ... access to your component. It's database! just a product ...and we Know you walk around your room naked every night! repository ... But, it is just a prod ... Damn it! Daniel Stori {turnoff.us}

Leti, technology research institute Commissariat à l'énergie atomique et aux énergies alternatives Minatec Campus | 17 rue des Martyrs | 38054 Grenoble Cedex | France www.leti.fr

