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ON THE APPLICABILITY OF BINARY CLASSIFICATION TO 
DETECT MEMORY ACCESS ATTACKS IN IOT 



| 2 

SOMMAIRE 

C&ESAR 2018- Rennes | CEA Leti | KERROUMI Sanaa | 08/11/18 

IoT node 

Take out and lessons learned 

Results 

Proposed methodology 

Problem statement 

Related works 



| 3 C&ESAR 2018- Rennes | CEA Leti | KERROUMI Sanaa | 08/11/18 

• Internet Of Things 

“ The interconnection via the internet of computing devices embedded in everyday 
objects enabling them to communicate” 

 

 

 

 
 

 

WHAT’S AN IOT NODE 

• The “thing” in IoT can be anything and everything as long as it has a unique identity 

and can communicate via the internet 

• Sensors, actuators or combined sensor/actuator 
• Limited capabilities in terms of their computational power, memory, energy, availability,  

      processing time, cost, … 

• Designed to disposable  

• Designed to last for decades  

• A foothold in the network (e.g, IoT goes nuclear, thermometer in 
  the fish tank attack) 

 limits their abilities to handle encryption or other data security functions 
 updates/security patches may be difficult or impossible. 

 any unpatched vulnerabilities will stay for very long 

Ronen, Eyal, et al. "IoT goes nuclear: Creating a ZigBee chain reaction." Security and Privacy (SP), 2017 IEEE Symposium on. IEEE, 2017. 
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EDGE-NODE VULNERABILITIES: WHAT COULD POSSIBLY GO 

WRONG? 
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• Attack modes: 

• Software attacks 
• Side channel attacks 

• Physical attacks 

• Network attacks 

 

• Why are we interested in the memory 

access attacks? 

• It is particularly hard to fake or hide 

malicious tasks memory accesses 

• It offers a great view on what’s going on 
inside the device  

• Alluring target for the attacker  
• Control the node 

• Read encryption keys or protected code 

• … 

 

EDGE-NODE VULNERABILITIES: WHAT COULD POSSIBLY GO 

WRONG? 
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EXISTENT COUNTERMEASURES: PREVENT VS PROTECT 

Fuses and flash 
readout protection  

• Pros 

• Inexpensive 

• Efficient  

• Easy to implement 

• Cons 

• Mostly set on level 
that permits 
access to memory 
(post deployment 
upgrades) 

Encryption 

• Pros 

• Preserve privacy 
and confidentiality 

• Convenient  

 

• Cons 
• Expenses 

• Compatibility 

• Encryption keys 

• Widespread 
security 
compromise  

 

Detection 

• Pros 

• Proactive 

• Scalable 

• Pervasive 

• Great 1st line of 
defense 
 

• Cons 

• False Positives 

• Leak 

• Mimicry attacks 

 

 



| 7 C&ESAR 2018- Rennes | CEA Leti | KERROUMI Sanaa | 08/11/18 

• Memory heat map 

• Idea:  profiling memory behavior by representing the 
frequency of access to a particular memory region 

(regardless of which component accessed it) during a 

time interval. The MHM is then combined with an 

image recognition algorithm to detect any anomalies. 

 
• Strengths: 

• system wide anomalies detection (not just malicious 

ones) 

• can be used in real-time embedded systems 

 

• Limitations : 
• expensive to compute: need to store several images of 

nominal MHM 

• wrong architecture (Config3 and higher )  

R&W: MEMORY DETECTION (1/2) 

Yoon, Man Ki, et al, “Memory heat map: anomaly detection in real-time embedded systems using memory behavior”. In Design Automation Conference (DAC), 2015 52nd 

ACM/EDAC/IEEE (pp. 1-6). IEEE. 
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• System call distribution 

• Idea : learn the normal system call frequency distributions, 
collected during legitimate executions of a sanitized system, 

combined by a clustering algorithm (k-means). If  an 

observation, at a run time, is not similar to any identified 

clustered. The observation is doomed malicious  

 
• Strengths: 

• simple  

 

• Limitations  
• Require an OS  

• need a throughout training   

• no adaptation of centroids (any change even if nominal would be 

flagged as malicious)   

• application to be monitored need to be very deterministic 

• definition of cut off line influence the FPR and detection rate 

 

R&W: MEMORY DETECTION (2/2) 

Yoon, Man-Ki, et al. "Learning execution contexts from system call distribution for anomaly detection in smart embedded system." Proceedings of the Second 

International Conference on Internet-of-Things Design and Implementation. ACM, 2017. 
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• Existent detection solutions are: 

• Not directly related to memory access attacks 
• Too expensive to compute 

• Used features in detection are either hard or impossible to acquire for constrained node (e.g., hardware 

performance counters, control flow, instruction mix, etc.) 

 

 

• Analyze the effectiveness of binary classifiers combined by simples features to detect 

memory access attacks in the context of a low cost IoT node 

PROBLEM STATEMENT 
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• 2 phases’ methodology: 

• Design: performed during the design of the node to build the detector 
• Operation:  the detector in operation 

 

 

 

 
 

 

 

 

 
 

 

 

 

 
• In this presentation we will focus on the design part of the detector 

 

 

 

METHODOLOGY: 
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USE CASE PRESENTATION: CONNECTED THERMOSTAT  

1 minute 

10 seconds / wake up signal 

 

 
 
 

 
 

 
 
 

 
 

Variables stored 
into RAM 

Heating regulation 

loop 

Temperature 

measurement 

Temperature 

10 seconds 

User action 

buttons 

Temp. target 

Mode 

Screen display 

Interrupts 

Send data to 

heating device 

Heat power 

Wake up signal 

event 

Internal variables 
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• Raw data: memory access log 

• Timestamp 
• Accessed address 

• Data manipulated  

• Type of data 

• Flag to indicate if the access is nominal or 

suspicious 

 

• Features – computed each time window 

• Number of memory reads, number of memory 

accesses, cycles between consecutive reads, 

address increment, number of “unknown” (first-

encountered) addresses, amount of 
read/accessed data … 

 

 

IN MORE DETAILS  

Time window 

Detected! 

Processor/

memory  

trace 

Feature 

extraction 

& selection 

Machine 

learning 

method 

Evaluation 

and trade-

offs 
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• Classic dump (CD):  basic memory dump require minimal effort from the attacker: 

• Attacker reads the entire memory in a contiguous way, the memory reads are spaced regularly in time 

and memory space 

 

Attacker assumed to be aware of the presence of some security monitor  avoid obvious change in 

the memory patterns of the device 

 

• Dumping in bursts (DB): 

• The memory is read in bursts, the accessed addresses are still contiguous but the time step between 

two consecutive reads is incremented by constant (BD(cts)), linearly (BD(lin)) or randomly (BD(rand))  

• Dump in non contiguous way (NG) 

• The address increment between two consecutive reads is incremented by constant (NG(cts)), linearly 

(NG(lin)) or randomly (NG(rand))  

ATTACK SCENARIOS 
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TRAINING & TESTING DATASETS 

dataset Training  Testing  

Experi

ment1 

Nominal+ CD DB and NG 

Experi

ment 2  

(1) Nom+(CD+NG+BD) 

(2) Nom+(CD+NG) 

(3) Nom+(CD+BD) 

 

(1) Nom+ 

(CD+NG+BD)* 

(2) Nom+BD 

(3) Nom+ NG 
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EXTRACTED FEATURES 

Processor/

memory  

trace 

Feature 

extraction 

& selection 

Machine 

learning 

method 

Evaluation 

and trade-

offs 

• Nread: number of reads per time interval 

• Inc: number of address increment per time 
interval 

• Time2Reads: average time elapsed 

between two consecutive reads in time 
interval 

• NmemAcc: number of memory access per 
time interval 

• UnknownAd: number of unknown addresses 

accessed during a time interval 
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• Let  X={x1, ..., xn} be our dataset and let  yi  {1,-1} be the class label of xi 

• The decision function (f) assign each new instance a label based on prior 

knowledge gathered during the training 

 

• List of classifiers included in the analysis 

• K nearest neighbor, Support vector machine, decision tree, random forest, naïve 

Bayes, linear discriminant analysis and quadratic discriminant analysis 

CLASSIFICATION 

f          x y Processor/

memory  

trace 

Feature 

extraction 

& selection 

Classifiers 

Evaluation 

and trade-

offs 
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• Assumption:  

• Features are independent 

 

• Intuition: 

• Given a new unseen instance, we (1) find its probability of it belonging to 

each class, and (2) pick the most probable. 

 

𝑃 𝑐𝑗 𝑥 =
𝑃 𝑥 𝑐𝑗 𝑃(𝑐𝑗)

𝑝(𝑥)
 

NAÏVE BAYESIAN MODEL  

 

 

 

Posterior 

probability 

Likelihood 

Predictor prior 

probability 

Class prior 

probability 
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• Assumption : 

• Every class distribution  is Gaussian and the covariance  
matrices are identical 

 

• Intuition  

 

 

• 𝛿 𝑘 𝑥  is the estimated discriminant score that the observation 

will fall in the kth class based on the value of the predictor 
variable x 

• û𝑘  is a class-specific mean vector, and Σ is a covariance 

matrix that is common to all K classes 

• 𝜋 𝑘 is the prior probability that an observation belongs to 

the  kth class 
 

•  An observation will be assigned to class k where the 

discriminant score 𝛿 𝑘 𝑥   is the largest, 

LINEAR DISCRIMINANT ANALYSIS  

𝛿 𝑘 𝑥 = 𝑥𝑇Σ−1𝜇 𝑘 - ½ 𝜇 𝑘
𝑇 − 𝜇 𝑘 + lo

g
⁡(𝜋 𝑘) 
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QUADRATIC DISCRIMINANT ANALYSIS  

• Assumptions 

• Class distribution is Gaussian but with different covariance 
matrices 

 

• Intuition 

𝛿 𝑘 𝑥 = 𝑥𝑇Σ−1𝜇 𝑘  − ½ 𝜇 𝑘
𝑇 − 𝜇 𝑘 + lo

g

⁡(𝜋 𝑘) 

 
• 𝛿 𝑘 𝑥  is the estimated discriminant score that the observation 

will fall in the kth class based on the value of the predictor 

variable x 

• û𝑘  is a class-specific mean vector, and Σ is a covariance 
matrix that is common to all K classes 

• 𝜋 𝑘 is the prior probability that an observation belongs to 

the  kth class 

•  an observation will be assigned to class k where the 

discriminant score 𝛿 𝑘 𝑥   is the largest, 
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K NEAREST NEIGHBOR  KNN 

• Assumption:  

• Data have a notion of distance (data are in a metric space) 

 

• Intuition: 

• Lazy learner  store all the training data and for every new incoming new 

observation, the algorithm will try to find the k nearest neighbor and do a 

majority voting 
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DECISION TREE  

• Assumption : 

• None  

• Intuition  

• Decompose a complex decision  into a union of several simpler 

decision 
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RANDOM FOREST 

• Assumption : 

• None  

• Intuition  

•  a collection or ensemble of simple tree predictors, each capable of 

producing a response when presented with a set of predictor values. 
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• Assumption 

• Linear SVM: the decision boundary is linear 
 

• Intuition: 

• The decision boundary should be as far away from the 
data of both classes as possible 

          We should maximize the margin 𝑚 =
1

| 𝑤 |
 

• This maximum-margin separator is determined by a 
subset of the data points (support vectors). 

 
 It will be useful computationally if only a small fraction of the 

data points are support vectors, because we use the support 

vectors to decide which side of the separator a test case is on. 

 

 

 

 

 

 
 

 

SUPPORT VECTOR MACHINE 
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SUPPORT VECTOR MACHINE : SOFT MARGIN 

 

1 

Slack variables ξi can be added to allow 

misclassification of difficult or noisy examples. 

Input space Input space 

ξj ξi 
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SUPPORT VECTOR MACHINE : KERNEL SVM 

 

2 

Projection to higher dimensional space where we can 

find a linear separator 

Input space 

f(.) 

Feature space 

f(  ) 
f(  ) 

f(  ) 

f(  ) 

f(  ) 
f(  ) 

f(  ) 

f(  ) 

f(  ) 

f(  ) 

f(  ) 

f(  ) 

f(  ) 

f(  ) 

f(  ) 
f(  ) f(  ) 

f(  ) 

f(  ) 

f(  ) 

f(  ) 

f(  ) 

f(  ) 
f(  ) 
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• The final classification rule is quite simple: 

     ⁡𝒇 𝒙𝒕𝒆𝒔
𝒕= 𝒔𝒊𝒈 𝒏(𝒃 +  𝜶𝒔𝒚𝒔𝑲 𝒙𝒕𝒆𝒔

𝒕, 𝒙𝒔 )𝒔∈SV  

 

 

 

• All the cleverness goes into selecting the support 

vectors that maximize the margin and computing the 

weight to use on each support vector. 

• We also need to choose a good kernel function and 

set the parameters of the used kernel 

• Popular kernels : 

• polynomial of a degree d ⁡𝐾 𝑥𝑖 , 𝑥𝑗 = (𝑥𝑖
𝑇𝑥𝑗 + 1)𝑑 

• radial basis function 𝐾 𝑥𝑖 , 𝑥𝑗 = ex

p

⁡(−𝛾 𝑥𝑖 −𝑥𝑗
2
)     

 

KERNERL SVM 

The set of support 

vectors 

Lagrange parameter 



| 27 C&ESAR 2018- Rennes | CEA Leti | KERROUMI Sanaa | 08/11/18 

HOW CAN WE BUILD THE DETECTOR ? TRAINING ON CLASSIC 

DUMP ATTACK 

Processor/

memory  

trace 

Feature 

extraction 

& selection 

Machine 

learning 

method 

Evaluation 

and trade-

offs 



| 28 C&ESAR 2018- Rennes | CEA Leti | KERROUMI Sanaa | 08/11/18 

• False positive rate: number of false alarms generated by the classifier 

𝑭𝑷

𝑹

=
𝑭𝑷

𝑭𝑷 + 𝑻𝑵
 

• False negative rate: number of miss detection by the classifier 

  𝑭𝑵𝑹 =
𝑭𝑵

𝑭𝑵+𝑻𝑷
 

• Precision: is a measure of a classifiers exactness   

𝑷𝑷

𝑽

=
𝑻𝑷

𝑻𝑷 + 𝑭𝑷
 

• Leakage: number of  bytes leaked before the classifier detects 

 

• Cost  

• Memory footprint of the classifier (in bytes) 

• Computation (number of basic arithmetic operation needed to classify one 

instance) 

 

EVALUATION METRICS 

Processor/

memory  

trace 

Feature 

extraction 

& selection 

Classifiers 

Evaluation 

and trade-

offs 
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Classifier Add(+)/Sub(-

)/comparison 

Mul (×) Sqrt() Exp() Div 

LSVM 𝑑 + 1 𝑛𝑠 − 1 𝑑 + 2 𝑛𝑠 0 0 0 

RSVM 𝑑 + 1 𝑛𝑠 𝑑 + 3 𝑛𝑠 0 𝑛𝑠 𝑛𝑠 

KNN 2𝑛 𝑑 + 1 − 2 × 𝑘 𝑛 × 𝑑 𝑛 0  0 

LDA 𝑑 𝑑 0 0 0 

QDA 𝑑2 + 𝑑 𝑑2 + 2⁡d 0 0 0 

Naïve 

Bayes 

𝑛𝑐 2d 𝑑 𝑑 2𝑑 

Random 

Forest 

𝑛_𝑡𝑟𝑒
𝑒

(ℎ + 1) 0 0 0 0 

Decision 

Tree 

ℎ 0 0 0 0 

COMPUTATIONAL COST FOR CLASSIFYING ONE INSTANCE 

Principle  

• In order to compare the computation cost in 

predicting the label of one instance for each 

classifier, we decomposed the learnt decision 

function of each classifier to basic arithmetic 

operations (additions, subtraction, comparison, 

multiplications, square root; exponential and 

divisions)  

• The memory cost is computed by calculating 

the number of variables needed by each 

classifier 

d: number of features ns: number of support vectors 

n: number of observations in 

training dataset 
k: number of neighbors 

 

nc: number of classes h: depth of the tree 

ntree: number of trees in the 

random forest 
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DETECTION PRECISION & LEAKAGE OF CLASSIFIERS TRAINED 

ON CLASSIC DUMP 



| 31 C&ESAR 2018- Rennes | CEA Leti | KERROUMI Sanaa | 08/11/18 

DETECTION PRECISION & LEAKAGE OF CLASSIFIERS TRAINED 

ON VARIANTS DUMPS 
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CLASSIFIERS PERFORMANCE (TRAINED ON CLASSIC DUMP) 
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CLASSIFIERS PERFORMANCE (TRAINED ON DUMP VARIANTS) 
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COMPARISON OF CLASSIFIERS PERFORMANCE 

Trained on classic dump Trained on dump variants  
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• Take out:  

• Binary classifiers are a great choice for low cost detectors 
• Diversifying the training dataset can increase the accuracy of the detection but that comes at the cost 

of the implementation complexity 

• Even when trained on limited examples of attacks binary classifiers were able to detect efficiently (few 

bytes leakage and detection accuracy around 90%) 

 

 

• Next step 

• Implementation on hardware 

• Exploration of other types of attacks 

• Evaluation of mimicry attack cost to evade the detection 

 

TAKE OUT AND NEXT STEP … 
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