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WHAT'S AN IOT NODE

* Internet Of Things

“ The interconnection via the internet of computing devices embedded in everyday
objects enabling them to communicate”

°* The “thing” inloT can be anything and everything as long as it has a unique identity
and can communicate via the internet

e Sensors, actuators or combined sensor/actuator
* Limited capabilities in terms of their computational power, memory, energy, availability,

processing time, cost, ... 3 |imits their abilities to handle encryption or other data security functions
Designed to disposable =< updates/security patches may be difficult or impossible.
Designed to last for decades =» any unpatched vulnerabilities will stay for very long Acutor (EDY
A foothold in the network (e.g, IoT goes nuclear, thermometer in Sencor (Votin)
the fish tank attack)
Housing/

Housing

)
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EDGE-NODE VULNERABILITIES: WHAT COULD POSSIBLY GO
WRONG?

ATTACK

TAKE CONTROL STEALINFORMATION = DISRUPT SERVICES

Contyols for smart door locks and
lighting systems can be vulnerable. Pl i
Infotai|nment devices can tell
systems offer a hacker where
Door locks multiple ways TS
have been into a car’'s P K
i unlocked electronics. c::f:za e
remotely.
; i ) y attacked
remotely.
Malware- High-capacity
infested insulin pumps
l refrigerators i, o are vulnerable.
have sent @ TR |
spam.
pa Hacked vehicle-
—— control systems
P~ can allow remote
control of brakes.
—

llustration: J. D. King
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WRONG?

Attack modes:

e Software attacks
e Side channel attacks
* Physical attacks
Network attacks

Why are we interested in the memory
access attacks?

* |tis particularly hard to fake or hide
malicious tasks memory accesses
* |t offers a great view on what’s going on
inside the device
* Alluring target for the attacker
* Control the node
* Read encryption keys or protected code

EDGE-NODE VULNERABILITIES: WHAT COULD POSSIBLY GO

MEMORY ACTIVE SIDE CHANMEL
* Read (dump For example, glitch attack
object code) BUS NETWORK ATTACK

* Replace * Monitor * Protocal attack

* Reflash * Man-in- * Attack bad implementation
the-middle * Gain foothold
\ ® Inject persistent malware

NVM
-

)

OPEN PORT

* UART FASSIVE SIDE CHANMEL
e JTAG * Power analysis (DPA)

* Default password Source: Microsemi Corp. * Electromagnetic analysis

C&ESAR 2018- Rennes | CEA Leti| KERROUMI Sanaa | 08/11/18 |5




EXISTENT COUNTERMEASURES: PREVENT VS PROTECT LEC.

* Pros * Pros * Pros
* Inexpensive * Preserve privacy » Proactive
« Efficient and confidentiality e Scalable
e Easy to implement « Convenient » Pervasive
e Cons o Great 1st line of
« Mostly set on level » Cons defense
that permits » Expenses
access to memory » Compatibility « Cons
(post deployment « Encryption keys « False Positives
upgrades) » Widespread o Leak
security « Mimicry attacks
compromise
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R&W: MEMORY DETECTION (1/2)

Memory Region Size
°* Memory heat map 3,013,284 Bytes HHHH
* |dea: profiling memory behavior by representing the Granularity
frequency of access to a particular memory region 2’04:53’:;98
. . . ells
(regardless of which component accessed it) during a 1,472 g =
time interval. The MHM is then combined with an
image recognition algorithm to detect any anomalies. &
!
_ Addrg ' =
e Strengths: 0XC0008000—> S meEEEEE E
* system wide anomalies detection (not just malicious
0 neS) Monitored Core Secure Core
® can be used in real-time embedded systems Memometer
FAN FaN
e Limitations : - 8 %}—Jﬁ
* expensive to compute: need to store several images of = e o . FEER B
nominal MHM & &
* wrong architecture (Config3 and higher ) Jb JL ﬁU

| Bus Interface E

v

Yoon, Man Ki, et al, “Memory heat map: anomaly detection in real-time embedded systems using memory behavior”. In Design Automation Conference (DAC), 2015 52nd

ACM/EDAC/IEEE (pp. 1-6). IEEE.
C&ESAR 2018- Rennes | CEA Leti | KERROUMI Sanaa | 08/11/18 |7




R&W: MEMORY DETECTION (2/2)

* System call distribution
* |dea: learn the normal system call frequency distributions,
collected during legitimate executions of a sanitized system,
combined by a clustering algorithm (k-means). If an
observation, at a run time, is not similar to any identified
clustered. The observation is doomed malicious

»

3

Cutoff

# of system call s,

* Strengths:

D® Cluster 3

* simple
# of system call s, >
o Limitations Figure 3: System call frequency distributions for S = {sq, s}
° Require an 0OS fmd clusters. The gray-colort'ad o.bjects are S(.IFDs in the train-
. d a throuahout trainin ing set. Each star-shaped point is the centroid of each cluster.
need a 9 9 The ellipsoid around each cluster draws its cutoff line.

* no adaptation of centroids (any change even if nominal would be
flagged as malicious)

* application to be monitored need to be very deterministic

* definition of cut off line influence the FPR and detection rate

Yoon, Man-Ki, et al. "Learning execution contexts from system call distribution for anomaly detection in smart embedded system." Proceedings of the Second
International Conference on Internet-of-Things Design and Implementation.ACM, 2017.
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PROBLEM STATEMENT

* Existent detection solutions are:

* Not directly related to memory access attacks

* Too expensive to compute

* Used features in detection are either hard or impossible to acquire for constrained node (e.g., hardware
performance counters, control flow, instruction mix, etc.)

* Analyze the effectiveness of binary classifiers combined by simples features to detect
memory access attacks in the context of a low cost loT node

C&ESAR 2018- Rennes | CEA Leti| KERROUMI Sanaa | 08/11/18 |9
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METHODOLOGY:

* 2 phases’ methodology:

* Design: performed during the design of the node to build the detector
* OQperation: the detector in operation

Design (off-line) Operation (on-line)
Choice of raw data source Monitoring szlected source of
ata
raw data Selected > raw data
raw data '/
—» Selection and extraction Extraction of selected features
of features '\
Selected >
features features features
‘ /
Training the classifiers '\ —
Selected > Detection
classifier T . B
l l/ decision (Nominal
Evaluation and trade-offs or suspicious)

— (cost, accuracy, leakage,
vulnerability, etc.)

* In this presentation we will focus on the design part of the detector

C&ESAR 2018- Rennes | CEA Leti| KERROUMI Sanaa |08/11/18 |10
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Temperature

measurement

10 seconds

Interrupts

event User action

buttons

USE CASE PRESENTATION: CONNECTED THERMOSTAT

g emperature

»> Mode

g lemp.target

Internal variables

Heating regulation

loop

1 minute

g Heatpower g

Variables stored
into RAM

Screendisplay

10 seconds/ wake up signal

Send data to

heating device

Wake up signal
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IN MORE DETAILS

°* Raw data: memory access log

Processor/ * Timestamp iR S < o
memory . ACCeSSed addreSS Ll e LTATEEREE L LA

trace e Data manipulated

[ ] Type Of da’ta 0eooee0e65 READ3Z2 Ge00008c -> 00000008
| FIRIRIRIRIRIRIR S A AN SR C 1R 10 [0 10 16 NG NEERE N FE1C 10 EA0 10 )
* Flagto indicate if the access is nominal or 0000000134 READ32 6000018 -~ 80006003
Feature suspicious 0000000180 READI2 00000020 -~ 00000000
extraction
& selection . : : R A
Features — computed each time window 0900000313 READ32 000060

sooo0s0341 REaD32 eeoeee] Letected!

. * Number of memory reads, number of memory 0000000337 READ3Z 0000044 > BBGRR0D

MaChIne . 00PEEEE411 READ3Z2 0000048 -=> 00000008

: accesses, cycles between consecutive reads, 0000000434 READ32 000004c -> 00000000

o leeiing address increment, number of “unknown” (first- e e 2 ao00o00e
method ’ O000000544 READSS 66000430 =
encou ntered) addresses, amount of 0000000567 READ32 00000442 -> 00000000

read/accessed data ...

Evaluation
and trade-
offs
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ATTACK SCENARIOS

* Classicdump (CD): basic memory dump require minimal effort from the attacker:

* Attacker reads the entire memory in a contiguous way, the memory reads are spaced regularly in time
and memory space

Attacker assumed to be aware of the presence of some security monitor = avoid obvious change in
the memory patterns of the device

°* Dumpingin bursts (DB):
* The memory is read in bursts, the accessed addresses are still contiguous but the time step between
two consecutive reads is incremented by constant (BD(cts)), linearly (BD(lin)) or randomly (BD(rand))
°* Dumpinnoncontiguous way (NG)
* The address increment between two consecutive reads is incremented by constant (NG(cts)), linearly
(NG(lin)) or randomly (NG(rand))
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TRAINING & TESTING DATASETS

% Classic Dump  BD(cts) BD(lin) BD(rand)

e > 10 - B

£ 50 0y 40- !! 3

GEJ g -4l dataset | Training Testing

= | 5 - »

b 40 5 - . 20 2 > >

3 R > -

-— «® [

o 30 ;i 0 07 . 0 |

- - 51015 0 50 0 25  Experi  Nominal+ CD DB and NG

S NG(cts) NG(lin) NG(rand) mentl

= 20 s > »

w

§ > 4 ——»  »m>

© _

5 10 200 20 - "®r ™™ Experi (1) Nom+(CD+NG+BD) (1) Nom+

o 2 ™ ment2  (2) Nom+(CD+NG) (CD+NG+BD)*

S o> m— (3) Nom+(CD+BD) (2) Nom+BD
0w B O -

E 0 F——— 0 THEEEL 0 powesou (3) Nom+ NG

2 0 50 o0 250 0 250 0 100

Number of memory read per time window
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EXTRACTED FEATURES

840 40 4" 40 l 40 ./“ 40 f
e
Processor/ z% L 2 %0 2 2
s =3 - o? !
memory 00 50 0 0 50 0 0 200 00 50 0 0 50
trace
40 f 40 40 l 40 ﬁ 40 ,
§20 20 20 20 20
Feature o o i (o am e ol
eX'[I’aCtlon 0 50 0 50 0 200 0 50 0 50
. 200 200 200 200 200
& selection E | i i f
& 100 100 100 100 100 Type
GE) ' i J ' ' *  Nominal
) = L S — - Attack
MaChIne 00 50 0 0 50 ° 0 200 00 50 0 0 50
jm learning » L Nread: number of reads per time interval
g # e Inc:number of address increment per time
225 } 25 25 l 25 25 f Interval
£ 2 s = 3  Time2Reads:average time elapsed
_ os 0o %% 0o Y9 0 % 50 07 50 betweentwo consecutive reads in time
Evaluation interval
and trade- %50 A 50 ‘f 50 | 50 /,: 50 . Nm&mAc_c number of memory access per
Offs %25 25 25 25 25 time inte rval
g « UnknownAd: number of unknown addresses
2 0m- 0 = 0 o o=m 0 eme 0 accessed during a time interval
0 50 0 50 0 200 0 50 0 50
NRead Inc TimeZ2Reads NmemAcc UnknownAd
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CLASSIFICATION

Processor/ X
memory
trace

"y

* Let X={xy, ..., X,} be our datasetand let y,e {1,-1} be the class label of x

Feature * The decision function (f) assign each new instance a label based on prior
extraction knowledge gathered during the training

& selection

* Listof classifiersincluded in the analysis

& Classifiers * K nearest neighbor, Support vector machine, decision tree, random forest, naive
Bayes, linear discriminant analysis and quadratic discriminant analysis

Evaluation
and trade-
offs
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NAIVE BAYESIAN MODEL

* Assumption:
* Features are independent

* Intuition:
* (Given a new unseen instance, we (1) find its probability of it belonging to

each class, and (2) pick the most probable. ”
L Class prior =
leellt;o(od| )\Ap(x|cj)p(cj)./ probability o :_‘E 40
Ci|X) =
o p(x) 5%
Posterior \ [T “«
probability Predictor prior E £ 20
probability o+
23
= -
0Oe
pa
20 40
Number of address increment
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!‘eaeu;l(::! LINEAR DISCRIMINANT ANALYSIS

°* Assumption:

* Every class distribution is Gaussian and the covariance
matrices are identical

° Intqition g
Or(x) = X" 27 g - Y fiy, — fix + 1o ()

. Sk(x) IS the estimated discriminant score that the observation

will fall in the ki class based on the value of the predictor
variable x

* {i; Is a class-specific mean vector, and % is a covariance
matrix that is common to all K classes

* i Is the prior probability that an observation belongs to
the ki class

* An observation will be assigned to class k where the
discriminant score 8, is the largest,

B
o

N
o

!
[
1
|
|
i «
!
i
|
[
i

Number of memory reads
per time interval

o
.
i

20 40
Number of address increment
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QUADRATIC DISCRIMINANT ANALYSIS

* Assumptions
e (Class distribution is Gaussian but with different covariance

matrices
° Intuition g
Oy = XTE7 My = Yo iy, — [y + 1o ()
. e
* Oy Is the estimated discriminant score that the observation g _
will fall in the k™ class based on the value of the predictor ;_..g 40
variable x 2 =
* (i, is a class-specific mean vector, and Z is a covariance [T, <
matrix that is common to all K classes ,E £ 20
* i Is the prior probability that an observation belongs to e E
the k™" class 3a
* an observation will be assigned to class k where the = 0 _/-7
discriminant score &y, is the largest, = 20 40
Number of address increment
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K NEAREST NEIGHBOR KNN

°* Assumption:
* Data have a notion of distance (data are in a metric space)

* |Intuition:

* Lazy learner = store all the training data and for every new incoming new
observation, the algorithm will try to find the k nearest neighbor and do a

majority voting
Initial Data Calculate Distance %
New example
to classi 1 Class A
* * e Elgzz: . * * Class B g —_—
Z%***] I IR S S40
X ka4 AA Eh g A AL - s

A A A 1 \\ A A D E \'\

s s iaa =
2e N
i Axis h
X-Axis X-Ax — g 20 \\\
Finding Neighbors & Voting for Labels E —_ \\_
| Class A (1)} @ N
) * * Class B O Q ™
FlOX ke S N
Aok LA AA - band o
I‘n K;;‘?'(\‘.g: A A - 0 ¢ _
AL A 20 40
Number of address increment
X-Axis
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DECISION TREE

* Assumption:

o None
* Intuition

* Decompose a complex decision into a union of several simpler

decision
decision nodes root node %
:
$50,000 E f_ﬂ 40
>c
o2
E C
Q -
]
=
« £20
D | -
o @
o O
e
Decision Tree: S o
Should | accept a new featnodes Z Oe
job offer? 20 _ 40
T Number of address increment
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RANDOM FOREST

* Assumption:

* None
* |Intuition

* acollection or ensemble of simple tree predictors, each capable of
producing a response when presented with a set of predictor values.

Random Forest Simplified

w
Instance E
m —
Random V \ 3 a0
>c
o2
E c
(0h] <
e o
KRER L0 08~ K0 RN Ea
Tree-1 Tree-2 Tree-n - =
2a
Class-A Class-B Class-B g o
I | > 0e :
Majority-Voting — 20 . 40
Number of address increment
Final-Class
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SUPPORT VECTOR MACHINE

°* Assumption
* Linear SVM: the decision boundary is linear

* Intuition:

* The decision boundary should be as far away from the
data of both classes as possible

= We should maximize the margin m = ﬁ ”
* This maximum-margin separator is determined by a -
subset of the data points (support vectors). ic_g 40
o2
=>» It will be useful computationally if only a small fraction of the 5 £
data points are support vectors, because we use the support = ‘IEJ <
vectors to decide which side of the separator a test case is on. 5 = 20
23
£ -
0Oe
Z
20 40
Number of address increment
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SUPPORT VECTOR MACHINE : SOFT MARGIN

Slack variables &i can be added to allow
misclassification of difficult or noisy examples.

v

v

Input space Input space
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SUPPORT VECTOR MACHINE : KERNEL SVM

Projection to higher dimensional space where we can
find a linear separator

A

@)
@ ¢@
@ »@® @
(|>() <|>F)¢-) ¢ @)
‘ 4)-)4)') *@
dﬁ-) 4)(- (|>-) 4)-)
@ @) ¢@)

Input space Feature space
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letl KERNERL SVM

* The final classificationruleis quite simple:

f(Xtes )t= sig ?b +Z}§V a#(xtes »ks))

The set of support Lagrange parameter

vectors
* All the cleverness goes into selecting the support ”
vectors that maximize the margin and computing the >
weight to use on each support vector. 2T 40
* Wealsoneed to choose a good kernel function and EE
set the parameters of the used kernel 5 f, «
* Popular kernels : «E £ 20
* polynomial of a degree d K(x;,x;)p= (x/ x; + 1) 8 o
* radial basis function K(xi,xj) =ex (—y|x; —xj||2) g 0 2
S 20 40
Number of address increment
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ELEC.

leti HOW CAN WE BUILD THEDETECTOR ? TRAINING ON CLASSIC
ceatech DUMP ATTACK

Processor/
memory <  Attack
trace 3 e Nominal
© .
O — ---- Nearest Neighbors
Feature ; g .
extraction S ~. 1 4L Linear SVM
& selection == — RBF SVM
0]
o) .
- S Decision Tree
acnine =
learning ° i R 2Nty SO s RO Random Forest
) .
method 2 o Naive Bayes
= —-—- LDA
Evaluation —— QDA

and trade- Number of address increment
offs
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EVALUATION METRICS

* False positive rate: number ﬁf false alarms generated by the classifier

Processor/
memory FP = Fp
trace FP 4+ TN
* False negative rate: number of miss detection by the classifier
Feature FNR = 2~
extraction . L _FN+TP
& selection Precision: is a measure of a f)assn‘lers exactness
PP =—
- TP+ FP

B Classifiers * Leakage: number of bytes leaked before the classifier detects
°* Cost
Evaluation * Memory footprint of the classifier (in bytes)
and trade- * Computation (number of basic arithmetic operation needed to classify one
offs instance)
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Principle

In order to compare the computation cost in
predicting the label of one instance for each
classifier, we decomposed the learnt decision
function of each classifier to basic arithmetic
operations (additions, subtraction, comparison,
multiplications, square root; exponential and
divisions)

The memory cost iIs computed by calculating
the number of variables needed by each
classifier

COMPUTATIONAL COST FOR CLASSIFYING ONE INSTANCE

Classifier | Add(+)/Sub(- Mul (X) Sqrt() | Exp()
)lcomparison

LSVM (d+ 1ng—1
RSVM (d + Dng
KNN 2n(d+1)—2xk
LDA d

QDA d?+d
Naive ne
Bayes

Random n_tre (he+ 1)
Forest

Decision h

Tree

d: number of features

n: number of observations in
training dataset

n.: number of classes

Nyee: NUMber of trees in the
random forest

(d+ 2)n,
(d + 3)ng 0 ng ng
nxd n 0 0
d 0 0 0
d>+2d 0 0 0
2d d d 2d
0 0 0 0
0 0 0 0

ng: number of supportvectors
k: number of neighbors

h: depth of the tree
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w

Leakage in bytes
=

—_—
OA

10

Decision Tree

DETECTION PRECISION & LEAKAGE OF CLASSIFIERS TRAINED

ON CLASSIC DUMP

LDA [ e —

Linear SV

Naive Bayes

QDA

Nearest Neighbors

RBF SVM

Random Forest

Precision in %

100

oo
(]

(@)
o

LN
o

N
o

o

Decision Tree

LDA

L —————
. —
I —
e ——
_——
I~

Linear SVM

BD(cts)
BD(lin)
BD(rand)
NG(cts)
NG(lin)
NG(rand)

N w < > »
o o 'a) S ]
® _-g O @p] O
© I
[ -
pd W c
o S
o 0
o)
prd
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DETECTION PRECISION & LEAKAGE OF CLASSIFIERS TRAINED
ON VARIANTS DUMPS

100
2
10
o 80
2 52
0 c
c = 60
N O
(q] -
1 K7
_@’10 S 40 . Mix1
© E mE Mix2
9 _— Mix3
20
0
10 — 0 —
| - [ -
= 5 % & S S & 5 = 3 5 & g & » 5
cC - m o L LL c = m [e)] L LL
e} 3 o 3 m £ 9 T o 3 m £
0 e > e X o 0 c = = n'd )
&) 3 M — L o) &) 3 M — o
O =z ) c @ pd ) c
a @ S a @ ks
S 3
Z Z
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CLASSIFIERS PERFORMANCE (TRAINED ON CLASSIC DUMP)

8 RSvM ® 10 KNN®
X g
o6 = 10
< £ . NB RSVM
= 510" °
o S
© L 2 LSVM
® >10*apA RF
3 2 = ToA )
©
- NB LSVM T QDA % 101 DT

0 ° o &KNN  LDAeRF ° = °

10° 10° 10" 10° 10° 10"
Leakage (bytes) Computation cost in basic operations
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CLASSIFIERS PERFORMANCE (TRAINED ON DUMP VARIANTYS)

0.5 %svm ® 10° KNN®
S ) RSVM
o 04 E 104 ®
m ==
~ 0.3 f= NB
E 510" °
@)
c—“é 0.2 S 2 LSVM
© >10 * qpa RF
201 S g *
© E o' DA
0.0 .LSVM.NB .DT .KNN.LDA .RF QDA. s .DT
3x10 4x10°  6x10’ 10° 10° 10° 10*
Leakage (bytes) Computation cost in basic operations
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COMPARISON OF CLASSIFIERS PERFORMANCE

Leakage Leakage
False alarmrate False alarm rate
—e— Decision tree
Miss detection Miss detection —*— Random forest
rate rate —eo— RBF SVM
—e— Naive bayes
Memory footprint Memory footprint
Computational cost Computational cost
Trained on classic dump Trained on dump variants
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TAKE OUT AND NEXT STEP ...

* Take out:
* Binary classifiers are a great choice for low cost detectors
* Diversifying the training dataset can increase the accuracy of the detection but that comes at the cost
of the implementation complexity
* Even when trained on limited examples of attacks binary classifiers were able to detect efficiently (few
bytes leakage and detection accuracy around 90%)

°* Next step

* Implementation on hardware
* Exploration of other types of attacks
* Evaluation of mimicry attack cost to evade the detection
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Contact us for more details:

I don't care! |
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Just a product
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Daniel Stori {turnoff.us}

Leti, technology research institute

Commissariat a I'énergie atomique et aux énergies alternatives
Minatec Campus | 17 rue des Martyrs | 38054 Grenoble Cedex | France

www.leti.fr
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