
AUTOMATED SOFTWARE PROTECTION FOR THE MASSES
AGAINST SIDE-CHANNEL ATTACKS

Nicolas Belleville 1

Damien Couroussé 1

Karine Heydemann 2

Henri-Pierre Charles 1
 1 Univ Grenoble Alpes, CEA, List, F-38000 Grenoble, France
 firstname.lastname@cea.fr
 2 Sorbonne Université, CNRS, LIP6, F-75005, Paris, France
 firstname.lastname@lip6.fr

| 2

SIDE CHANNEL ATTACKS

Electromagnetic
emissions

Power

consumption
…

Ciphertexts
produced

Try to find the key using:
• measurements
• ciphertexts or plaintexts
• a consumption model

| 3

SIDE CHANNEL ATTACKS

x1

???

Electromagnetic
emissions

Power

consumption
…

Ciphertexts
produced

Try to find the key using:
• measurements
• ciphertexts or plaintexts
• a consumption model

| 4

SIDE CHANNEL ATTACKS

x10

???

Electromagnetic
emissions

Power

consumption
…

Ciphertexts
produced

Try to find the key using:
• measurements
• ciphertexts or plaintexts
• a consumption model

| 5

SIDE CHANNEL ATTACKS

x100

???

Electromagnetic
emissions

Power

consumption
…

Ciphertexts
produced

Try to find the key using:
• measurements
• ciphertexts or plaintexts
• a consumption model

| 6

SIDE CHANNEL ATTACKS

x290

✓

Electromagnetic
emissions

Power

consumption
…

Ciphertexts
produced

Try to find the key using:
• measurements
• ciphertexts or plaintexts
• a consumption model

<5kB

(less than a hello
world binary file)

| 7

SIDE CHANNEL ATTACKS

x290

✓?

Electromagnetic
emissions

Power

consumption
…

Ciphertexts
produced

Try to find the key using:
• measurements
• ciphertexts or plaintexts
• a consumption model

Make this
bigger!

<5kB

(less than a hello
world binary file)

| 8

SOFTWARE COUNTERMEASURES

Hiding Masking

secret: 01001101

share 1: 10010001
share 2: 11011100

share1 xor share2 = secret

secret: 01001101

add noise split secret
into shares

Measurements
are noisy

Measurements
are no more

directly correlated
to secret

Attack is harder

| 9

SOFTWARE COUNTERMEASURES

Hiding Masking

secret: 01001101

share 1: 10010001
share 2: 11011100

share1 xor share2 = secret

secret: 01001101

add noise split secret
into shares

Measurements
are noisy

Measurements
are no more

directly correlated
to secret

Attack is harder

| 10

CODE POLYMORPHISM

WITH RUNTIME CODE GENERATION

Electromagnetic
emissions

Power
consumption

Function’s
result

change this don’t change this

| 11

CODE POLYMORPHISM

WITH RUNTIME CODE GENERATION

Electromagnetic
emissions

Power
consumption

Executed
instructions

Manipulated data

depends on Function’s
result

impacts

change this don’t change this

| 12

CODE POLYMORPHISM

WITH RUNTIME CODE GENERATION

Electromagnetic
emissions

Power
consumption

impacts Function’s
result

impacts

change this don’t change this

Executed
instructions

Manipulated data

| 13

CODE POLYMORPHISM

WITH RUNTIME CODE GENERATION

Electromagnetic
emissions

Power
consumption

impacts Function’s
result

impacts

change this don’t change this change this

Executed
instructions

Manipulated data

| 14

CODE POLYMORPHISM

WITH RUNTIME CODE GENERATION

Electromagnetic
emissions

Power
consumption

Instructions
executed

Data manipulated

impacts Function’s
result

impacts

change this don’t change this

Electromagnetic
emissions

Power
consumption

Instructions
executed

Data manipulated

Function’s
result

Electromagnetic
emissions

Power
consumption

Executed
instructions

Manipulated data

Function’s
result

change this

| 15

CODE POLYMORPHISM

WITH RUNTIME CODE GENERATION

Electromagnetic
emissions

Power
consumption

Instructions
executed

Data manipulated

impacts Function’s
result

impacts

change this don’t change this

Function’s
result

Function’s
result

change this

Runtime code generation

regenerate a
different code

regularly

Electromagnetic
emissions

Power
consumption

Instructions
executed

Data manipulated

Electromagnetic
emissions

Power
consumption

Executed
instructions

Manipulated data

only use code
transformations that

preserve program
semantics

| 16

CODE POLYMORPHISM

WITH RUNTIME CODE GENERATION

Issues Our contributions

Countermeasures are usually manually
applied

Automatic application of the
countermeasure

Countermeasures are usually given for
particular ciphers

Any code can be hardened

Target a wide range of platforms (be
lightweight)

Use static memory allocation
Allocation of a realistic size (don’t waste
memory)
Use specialized code generation

An attacker may write on an executable
memory section

Use the specialization of the generator to
manage memory permissions

Hard to have a good trade-off between
security and performance

Highly configurable → possible to find a
trade-off

| 17

SIDE CHANNEL ATTACKS

x290

✓

Electromagnetic
emissions

Power

consumption
…

Ciphertexts
produced

Try to find the key using:
• measurements
• ciphertexts or plaintexts
• a consumption model

Unprotected

5kB

(less than a hello
world binary file)

| 18

SIDE CHANNEL ATTACKS

x290

Electromagnetic
emissions

Power

consumption
…

Ciphertexts
produced

Try to find the key using:
• measurements
• ciphertexts or plaintexts
• a consumption model

Protected

???

x2.5 overhead

5kB

(less than a hello
world binary file)

| 19

SIDE CHANNEL ATTACKS

x1 000

Electromagnetic
emissions

Power

consumption
…

Ciphertexts
produced

Try to find the key using:
• measurements
• ciphertexts or plaintexts
• a consumption model

Protected

???

x2.5 overhead

16kB

(one second
of an mp3 file)

| 20

SIDE CHANNEL ATTACKS

x10 000

Electromagnetic
emissions

Power

consumption
…

Ciphertexts
produced

Try to find the key using:
• measurements
• ciphertexts or plaintexts
• a consumption model

Protected

???

x2.5 overhead

160kB

(10 seconds
of an mp3 file)

| 21

SIDE CHANNEL ATTACKS

x100 000

Electromagnetic
emissions

Power

consumption
…

Ciphertexts
produced

Try to find the key using:
• measurements
• ciphertexts or plaintexts
• a consumption model

Protected

???

x2.5 overhead

1.6MB

(our paper)

| 22

SIDE CHANNEL ATTACKS

x1 000 000

Electromagnetic
emissions

Power

consumption
…

Ciphertexts
produced

Try to find the key using:
• measurements
• ciphertexts or plaintexts
• a consumption model

Protected

???

x2.5 overhead

16MB

(a 20Mpixels
jpeg image)

| 23

SIDE CHANNEL ATTACKS

x3 800 000

Electromagnetic
emissions

Power

consumption
…

Ciphertexts
produced

Try to find the key using:
• measurements
• ciphertexts or plaintexts
• a consumption model

Protected

✓

x2.5 overhead

60MB

(a 3minutes long
full HD video)

| 24

SIDE CHANNEL ATTACKS

x3 800 000

Electromagnetic
emissions

Power

consumption
…

Ciphertexts
produced

Try to find the key using:
• measurements
• ciphertexts or plaintexts
• a consumption model

Protected

✓

x13 000

improvement!

x2.5 overhead

60MB

(a 3minutes long
full HD video)

| 25

• Background

• Side channel attacks

• Software countermeasures

• Code polymorphism

• Automated application of code polymorphism

• Overview

• Code transformations used

• Memory management

• Experimental evaluation

• Performance evaluation

• Security evaluation

OUTLINE

| 26

• Background

• Side channel attacks

• Software countermeasures

• Code polymorphism

• Automated application of code polymorphism

• Overview

• Code transformations used

• Memory management

• Experimental evaluation

• Performance evaluation

• Security evaluation

OUTLINE

| 27

OVERVIEW

.c
Modified
compiler

.c

Annotated
function

Wrapper
Specialized

runtime code
generator

Compiler binary

STATICALLY

Main idea:
The annotated function
is replaced by a wrapper
and a generator

| 28

OVERVIEW

.c
Modified
compiler

.c

Annotated
functions

Wrappers
Specialized

runtime code
generators

Compiler binary

STATICALLY

Main idea:
Each annotated function
has its own generator
(with shared code
segments)

| 29

OVERVIEW

.c
Modified
compiler

.c

Annotated
functions

Wrappers
Specialized

runtime code
generators

Compiler binary

STATICALLY

Main idea:
Each annotated function
has its own generator
(with shared code
segments)

| 30

OVERVIEW

.c
Modified
compiler

.c

Annotated
functions

Wrappers
Specialized

runtime code
generators

Compiler binary

STATICALLY

Main idea:
Each annotated function
has its own generator
(with shared code
segments)

| 31

OVERVIEW

.c
Modified
compiler

.c

Annotated
function

Wrapper
Specialized

runtime code
generator

Compiler binary

STATICALLY

| 32

① calls

② generates

OVERVIEW

.c
Modified
compiler

.c

Annotated
function

Wrapper
Specialized

runtime code
generator

Compiler binary

RUNTIME

STATICALLY

Runtime
code

generator

Wrapper

polymorphic
instance

③ calls

polymorphic
instance

polymorphic
instance
polymorphic

instance
polymorphic

instance
polymorphic

instance
polymorphic

instance

Main idea:
At runtime, a new
polymorphic instance is
generated at each call

| 33

① calls

② generates

OVERVIEW

.c
Modified
compiler

.c

Annotated
function

Wrapper
Specialized

runtime code
generator

Compiler binary

RUNTIME

STATICALLY

Runtime
code

generator

Wrapper
③ calls
④ calls
⑤ calls

… How to find a good trade-off
between security and performance?
How to have variability in between
generations?

polymorphic
instance

polymorphic
instance

polymorphic
instance
polymorphic

instance
polymorphic

instance
polymorphic

instance
polymorphic

instance

Main idea:
At runtime, a new
polymorphic instance is
generated at each call
once in a while

| 34

① calls

② generates

OVERVIEW

.c
Modified
compiler

.c

Annotated
function

Wrapper
Specialized

runtime code
generator

Compiler binary

RUNTIME

STATICALLY

Runtime
code

generator

Wrapper
③ calls
④ calls
⑤ calls

…

polymorphic
instance

polymorphic
instance

polymorphic
instance
polymorphic

instance
polymorphic

instance
polymorphic

instance
polymorphic

instance

Main idea:
The size of polymorphic
instances vary

How to allocate
memory?

?

| 35

OVERVIEW

.c
Modified
compiler

.c Compiler binary

STATICALLY
fr

o
n

t-
en

d

m
id

d
le

-e
n

d

b
ac

k-
en

d

co
d

e
an

al
ys

is

+
co

d
e

em
is

si
o

n

All standard compiler optimizations
are applied
→ the runtime generated code is
 statically optimized

We emit C code instead of ARM
Thumb assembly

We perform static analysis to
help the runtime code generator
(memory and register)

| 36

OVERVIEW

.c
Modified
compiler

.c

Annotated
function

Compiler binary

STATICALLY

Idée:
Un wrapper et un
générateur

#pragma odo_polymorphic
int f_critical(int a, int b) {
 int c = a^b;
 a = a+b;
 a = a % c;
 return a;
}

void SGPC_f_critical() {
 raise_interrupt_rm_X_add_W(code_f);
 reg_t r[] = {0,1,2,3,4,5,6,...,12,13,14,15};
 push_T2_callee_saved_registers();
 eor_T2(r[4], r[1], r[0]);
 add_T2(r[0], r[1], r[0]);
 sdiv_T2(r[1], r[0], r[4]);
 mls_T2(r[0], r[1], r[4], r[0]);
 pop_T2_callee_saved_registers();
 raise_interrupt_rm_W_add_X(code_f);
}

int f_critical(int a, int b) {
 if (SHOULD_BE_REGENERATED())
 SGPC_f_critical();
 return code_f(a, b);
}

| 37

• Background

• Side channel attacks

• Software countermeasures

• Code polymorphism

• Automated application of code polymorphism

• Overview

• Code transformations used

• Memory management

• Experimental evaluation

• Performance evaluation

• Security evaluation

OUTLINE

| 38

xor r6, r5, r8
add r4, r4, r5

CODE TRANSFORMATIONS USED AT RUNTIME

Register shuffling

RANDOM general purpose

register permutation

Instruction shuffling

independent instructions

are emitted in a RANDOM

order

Semantic variants

replacement of an

instruction by a RANDOMLY

selected semantic variant

Noise instructions

insertion of a RANDOM

number of RANDOMLY

chosen noise instructions

Dynamic noise

RANDOM insertion of noise

instructions with a RANDOM

jump

add r4, r4, r5
xor r6, r5, r8

add r11, r11, r7
xor r8, r7, r5

r4
r11 …

add r4, r4, r5
xor r6, r5, #12348
xor r6, r6, r8
xor r6, r6, #12348

add r4, r4, r5
sub r7, r6, r2
load r3, r10, #53
xor r6, r5, r8

useless
instructions

add r4, r4, r5
jump 0, 1 or 2 instructions
sub r7, r6, r2
load r3, r10, #53
xor r6, r5, r8

| 39

CONFIGURABILITY

Period of

regeneration

ℕ

Register shuffling

{𝟎, 𝟏}

Instruction shuffling

{𝟎, 𝟏}

Semantic variants

{𝟎, 𝟏, 𝟐}

Noise instructions

{𝟎, 𝟏, 𝟐} × ℝ × ℕ

Dynamic noise

ℕ

Total configuration space:

{𝟎, 𝟏}𝟐× {𝟎, 𝟏, 𝟐}𝟐×ℝ × ℕ𝟑

| 40

• Background

• Side channel attacks

• Software countermeasures

• Code polymorphism

• Automated application of code polymorphism

• Overview

• Code transformations used

• Memory management
• Memory allocation & overflow prevention

• Memory permissions

• Experimental evaluation

• Performance evaluation

• Security evaluation

OUTLINE

| 41

① calls

② generates

OVERVIEW

.c
Modified
compiler

.c

Annotated
function

Wrapper
Specialized

runtime code
generator

Compiler binary

RUNTIME

STATICALLY

Runtime
code

generator

Wrapper
③ calls
④ calls
⑤ calls

…

polymorphic
instance

polymorphic
instance

polymorphic
instance
polymorphic

instance
polymorphic

instance
polymorphic

instance
polymorphic

instance

Main idea:
The size of polymorphic
instances vary

How to allocate
memory?

?

| 42

MEMORY STATIC ALLOCATION

(type of curve one can obtain) Probability

Amount of used memory

Worst case is
terrible

Distribution of generated codes’ size

| 43

MEMORY STATIC ALLOCATION

Probability

Worst case is
terrible

Compute a more realistic size using a threshold

threshold: probability of having an overflow
10-6 by default

Amount
to allocate

Range where an
overflow is possible

For a 100 instructions
code, allocated size is 5x
smaller than worst case!

(configuration low (defined later))

(type of curve one can obtain)

Distribution of generated codes’ size

Amount of used memory

| 44

OVERFLOW PREVENTION

.c
Modified
compiler

.c Compiler binary

RUNTIME

STATICALLY

Runtime
code

generator

Wrapper

polymorphic
instance

polymorphic
instance

polymorphic
instance
polymorphic

instance
polymorphic

instance
polymorphic

instance
polymorphic

instance

always keep space for
useful instructions
(limit polymorphism if
necessary)

computes the size of
useful instructions

puts the information
directly in runtime
code generator’s
code

①

②

③

①

②

③

| 45

• Background

• Side channel attacks

• Software countermeasures

• Code polymorphism

• Automated application of code polymorphism

• Overview

• Code transformations used

• Memory management
• Memory allocation & overflow prevention

• Memory permissions

• Experimental evaluation

• Performance evaluation

• Security evaluation

OUTLINE

| 46

MANAGEMENT OF MEMORY PERMISSIONS

Objective: Guarantee W ⊕ X and that only the generator can write into the buffer

Generation begins

Specialized runtime
code generator

Interrupt handler
Instance buffer

(memory allocated)

Check address of interrupt

good bad
X only to
W only ERROR

①
②

Generate code

X only

W only

W only
to X only ERROR

① X only

Generation ends

resume execution

resume execution

Check address of interrupt

②

bad good

raise interrupt

raise interrupt

| 47

• Background

• Side channel attacks

• Software countermeasures

• Code polymorphism

• Automated application of code polymorphism

• Overview

• Code transformations used

• Memory management

• Experimental evaluation

• Performance evaluation

• Security evaluation

OUTLINE

| 48

• 15 different test cases

• 4 different selected configurations

• none: no polymorphism

• low: only noise instructions, generation is done every 250 executions
• Theoretical number of variants is already very high!

>6×1022 variants for a 10 instructions code

>10704 variants for the 278 instructions AES we use

• medium: all transformations activated, generation is done every execution

• high: all transformations activated, different probability model for noise instructions

insertion, generation is done every execution

• STM32 board (ARM cortex M3 – 24 MHz – 8kB of RAM)

EXPERIMENTAL SETUP

| 49

PERFORMANCE EVALUATION

Configuration Execution time overhead
(geometric mean)

Size overhead
(geometric mean)

none x1.40 x1.70

low x2.31 x2.87

medium x2.45 x3.44

high x4.03 x3.81

more results in our paper

overheads depend
on configuration
→ trade-off to find

generation done in
linear complexity

| 50

• Background

• Side channel attacks

• Software countermeasures

• Code polymorphism

• Automated application of code polymorphism

• Overview

• Code transformations used

• Memory management

• Experimental evaluation

• Performance evaluation

• Security evaluation

OUTLINE

| 51

• CPA on Sbox output with HW

• Success rate at 0.8 in

• 290 traces for unprotected AES

• 3 800 000 traces for configuration low

SECURITY EVALUATION
Technical details:

PicoScope 2208A, EM probe RF-U 5-2
(Langer), PA 303 preamplifier (Langer)
Sampling at 500 Msample/s with 8bits

resolution, 24500 samples per trace

13000x more
traces needed!

Execution time
overhead: x2.5

including
generation cost!

more results in our paper

| 52

• Automatic ✓

• Configurable ✓

• Efficient ✓

• With static memory
allocation of a realistic size ✓

• With memory permission

 management ✓

• Usable on constrained devices ✓

• Open question: interest of code polymorphism
against fault injection attacks?

CONCLUSION

Centre de Saclay
 Nano-Innov PC 172

91191 Gif sur Yvette Cedex

Centre de Grenoble
17 rue des Martyrs

38054 Grenoble Cedex

Thank you for
your attention

Questions?

contact:
nicolas.belleville@cea.fr

Automated software
protection for the
masses against
side-channel attacks
Nicolas Belleville

Damien Couroussé
Karine Heydemann
Henri-Pierre Charles

This work was partially funded by the French
National Research Agency (ANR) as part of the
projects COGITO and PROSECCO, respectively
funded by the programs INS-2013 under grant
agreement ANR-13-INSE-0006-01 and AAP-2015
under grant agreement ANR-15-CE39.

