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CODE POLYMORPHISM 

WITH RUNTIME CODE GENERATION 

Issues Our contributions 

Countermeasures are usually manually 
applied 

Automatic application of the 
countermeasure 

Countermeasures are usually given for 
particular ciphers 

Any code can be hardened 

Target a wide range of platforms (be 
lightweight) 

Use static memory allocation 
Allocation of a realistic size (don’t waste 
memory) 
Use specialized code generation 

An attacker may write on an executable 
memory section 

Use the specialization of the generator to 
manage memory permissions 

Hard to have a good trade-off between 
security and performance 

Highly configurable → possible to find a 
trade-off 
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instance 
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Main idea: 
At runtime, a new 
polymorphic instance is 
generated at each call 
once in a while 
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All standard compiler optimizations 
are applied 
→ the runtime generated code is    
     statically optimized 

We emit C code instead of ARM 
Thumb assembly 
 

We perform static analysis to 
help the runtime code generator 
(memory and register) 
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Idée: 
Un wrapper et un 
générateur 

#pragma odo_polymorphic 
int f_critical(int a, int b) { 
 int c = a^b; 
 a = a+b; 
 a = a % c; 
 return a; 
} 

void SGPC_f_critical() { 
 raise_interrupt_rm_X_add_W(code_f); 
 reg_t r[] = {0,1,2,3,4,5,6,...,12,13,14,15}; 
 push_T2_callee_saved_registers(); 
 eor_T2(r[4], r[1], r[0]); 
 add_T2(r[0], r[1], r[0]); 
 sdiv_T2(r[1], r[0], r[4]); 
 mls_T2(r[0], r[1], r[4], r[0]); 
 pop_T2_callee_saved_registers(); 
 raise_interrupt_rm_W_add_X(code_f); 
} 

int f_critical(int a, int b) { 
 if (SHOULD_BE_REGENERATED()) 
  SGPC_f_critical(); 
 return code_f(a, b); 
} 
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xor r6, r5, r8 
add r4, r4, r5 

CODE TRANSFORMATIONS USED AT RUNTIME 

Register shuffling 
 

RANDOM general purpose 

register permutation 

Instruction shuffling 
 

independent instructions 

are emitted in a RANDOM 

order 

 

Semantic variants 
 

replacement of an 

instruction by a RANDOMLY 

selected semantic variant 

Noise instructions 
 

insertion of a RANDOM 

number of RANDOMLY 

chosen noise instructions 
 

Dynamic noise 

RANDOM insertion of noise 

instructions with a RANDOM 

jump 

add r4, r4, r5 
xor r6, r5, r8 

add r11, r11, r7 
xor r8, r7, r5 

r4 
r11 … 

add r4, r4, r5 
xor r6, r5, #12348 
xor r6, r6, r8 
xor r6, r6, #12348 

add r4, r4, r5 
sub r7, r6, r2 
load r3, r10, #53 
xor r6, r5, r8 

useless 
instructions 

add r4, r4, r5 
jump 0, 1 or 2 instructions 
sub r7, r6, r2 
load r3, r10, #53 
xor r6, r5, r8 
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Semantic variants 
 

{𝟎, 𝟏, 𝟐} 

Noise instructions 
 

{𝟎, 𝟏, 𝟐} × ℝ × ℕ 
 

Dynamic noise 

ℕ 

Total configuration space: 

{𝟎, 𝟏}𝟐× {𝟎, 𝟏, 𝟐}𝟐×ℝ × ℕ𝟑 
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MEMORY STATIC ALLOCATION 

Probability 

Worst case is 
terrible 

Compute a more realistic size using a threshold 
 
threshold: probability of having an overflow 
10-6 by default 

Amount  
to allocate 

Range where an 
overflow is possible 

For a 100 instructions 
code, allocated size is 5x 
smaller than worst case! 

(configuration low (defined later)) 

(type of curve one can obtain) 

Distribution of generated codes’ size 

Amount of used memory 
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OVERFLOW PREVENTION 
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MANAGEMENT OF MEMORY PERMISSIONS 

Objective: Guarantee W ⊕ X and that only the generator can write into the buffer 
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code generator 
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Instance buffer 
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Check address of interrupt 

good bad 
X only to 
W only ERROR 
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Generate code 

X only 

W only 

W only 
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① X only 

Generation ends 

resume execution 
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Check address of interrupt 
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bad good 

raise interrupt 

raise interrupt 
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• 15 different test cases 

• 4 different selected configurations 

• none: no polymorphism 

• low: only noise instructions, generation is done every 250 executions 
• Theoretical number of variants is already very high! 

>6×1022 variants for a 10 instructions code 

>10704 variants for the 278 instructions AES we use 

• medium: all transformations activated, generation is done every execution 

• high: all transformations activated, different probability model for noise instructions 

insertion, generation is done every execution 

• STM32 board (ARM cortex M3 – 24 MHz – 8kB of RAM) 

 

EXPERIMENTAL SETUP 
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PERFORMANCE EVALUATION 

Configuration Execution time overhead 
(geometric mean) 

Size overhead 
(geometric mean) 

none x1.40 x1.70 

low x2.31 x2.87 

medium x2.45 x3.44 

high x4.03 x3.81 

more results in our paper 

overheads depend 
on configuration 
→ trade-off to find 
 
generation done in 
linear complexity 
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• CPA on Sbox output with HW 

• Success rate at 0.8 in 

• 290 traces for unprotected AES 

• 3 800 000 traces for configuration low 

SECURITY EVALUATION 
Technical details: 

PicoScope 2208A, EM probe RF-U 5-2 
(Langer), PA 303 preamplifier (Langer) 
Sampling at 500 Msample/s with 8bits 

resolution, 24500 samples per trace 

13000x more 
traces needed! 

Execution time 
overhead: x2.5 

including 
generation cost! 

more results in our paper 
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• Automatic ✓ 
 

• Configurable ✓ 
 

• Efficient ✓ 
 

• With static memory 
allocation of a realistic size ✓ 
 

• With memory permission 

     management ✓ 
 

• Usable on constrained devices ✓ 
 

• Open question: interest of code polymorphism  
against fault injection attacks? 

 

 

 

CONCLUSION 
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