
SECURING EMBEDDED SOFTWARE WITH COMPILERS

Damien Couroussé | CEA / LIST / DACLE
CEA-LETI LID, Minatec Grenoble, 2019-06-28

| 2

A major threat against secure embedded systems
• The most effective attacks against implementations of

cryptography

• Relevant against many parts of CPS/IoT: bootloaders,
firmware upgrade, etc.

• Recently used to leverage software vulnerabilities [1]

In practice,
• An attacker mostly uses logical attacks if the target is

unprotected (e.g. typical IoT devices): buffer overflows,
ROP, protocol vulnerabilities, etc.

• All high security products embed countermeasures
against side-channel and fault injection attacks. E.g. Smart
Cards, payTV, military-grade devices.
• Using a combination of hardware and software

countermeasures
• Tools for Side-channel and fault injection are getting

really affordable

PHYSICAL ATTACKS

side channel
attacks

fault injection
attacks

CEA LID 2019

[1] A. Cui and R. Housley, ‘BADFET:
Defeating Modern Secure Boot Using
Second-Order Pulsed Electromagnetic
Fault Injection’, presented at the
WOOT, 2017.

| 3

AUTOMATED APPLICATION OF COUNTERMEASURES
WITH A COMPILER

 Access to program’s semantics (e.g. secret variable)

 Security properties are not guaranteed, post compilation

 Corollary: can lead to bigger overheads

Compiler

Binary code

Source code

 Naturally fits to low-level / machine code protection
schemes

 (Re-)construction of a program representation is difficult

 Mostly ad hoc protection schemes

Source to source
approach

Assembly
approach

 Access to program semantics
 Control over machine code
 Benefit from compiler optimisations
 Implementation within the compiler is
difficult
/ Focus on generic countermeasures

← our approach

| 4

Security
evaluation

Performance
evaluation

compilateur

COGITO

Automated application of software countermeasures against physical attacks

 A toolchain for the compilation of secured programs

LLVM compiler

CEA
extensions

Legacy source
code, unsecured

Secured
machine code

User security
annotations

Several countermeasures

• Fault tolerance, including multiple fault
injections

• Execution Integrity & Control-Flow
Integrity

• Detection of perturbations on the
instruction path, at the granularity of a
single machine instruction

• Side channel hiding

Tools for security and performance
evaluations

Based on LLVM: an industry-grade, state-of-
the art compiler (competitive with GCC)

C
O

G
IT

O

| 5

• Compilation: automation of the application of software countermeasures
against fault attacks and side-channel attacks

• Functional verification: of the secured machine code (equivalence with an
unprotected version of the same program)

• Security verification: correctness of the applied countermeasures w.r.t a
security model

Compiler
Code

+
annotations
for security

features

FE ME BE

Security add-ons

Binary prog.

Extended
repr.

Binary prog.

Extended
repr.

Security features informal formal

Formal verification tool

Fonctional equiv.

Security properties

SECURING AND VERIFYING PROGRAMS

On-going joint work with LIP6, Paris (PROSECCO – ANR 2015)

| 6

Objective: the program is not perturbed by the injection of faults
• Countermeasure based on a protection scheme formally verified for the ARM architecture

[Moro et al., 2014, Barry et al. 2016]

• Automatic application by the compiler

• Allow to parameterize level of protection

• Generalisation of [Moro et al., 2014] to multiple faults of configurable width

• Target: ARM Cortex-M cores

• Fine-grained countermeasure applied to critical functions reduces the execution overhead below

x1.23 and size overheads below x1.12 [Barrys’ thesis, 2017]

FAULT TOLERANCE

[Moro et a l ., 2014] Moro, N., Heydemann, K., Encrenaz, E., & Robisson, B. (2014). Formal veri fication of a software countermeasure against instruction

skip attacks . Journal of Cryptographic Engineering, 4(3), 145 -156.

[Barry et a l . 2016] Barry, T., Couroussé, D., & Robisson, B. (2016, January). Compi lation of a Countermeasure Against Instruction -Skip Fault Attacks . In

Proceedings of the Third Workshop on Cryptography and Securi ty in Computing Systems (pp. 1 -6). ACM.

| 7

EXECUTION INTEGRITY & CFI

Objective: monitoring program execution integrity, at runtime

Combined protections:

• Protection of the control-flow of an application (Control-Flow Integrity)

• Beyond CFI: protection of branchless sequences of instructions, at the granularity of
a single machine instruction

Coverage:

• Alteration of the PC (instruction skips,
branches)

• Corruption of branches

• Alteration of branch conditions

Two implementations

• Software only countermeasure.
Implementation for ARM

• HW-SW countermeasure. Fine-grain
execution integrity, verification &
authentication.

Secured transition

Illegal transition

Secured application component

Unsecured component

| 8

SIDE CHANNEL HIDING
WITH CODE POLYMORPHISM

Code polymorphism: regularly changing the observable behavior of a program,
at runtime, while maintaining unchanged its functional properties,

• Protection against physical attacks: side channel & fault attacks
• Changes the spatial and temporal properties of the secured code
• Can be combined with other state-of-the-Art HW & SW Countermeasures

• Can run on low-end embedded systems with only a few kB of memory
• Illustrated below: STM32F1 microcontroler with 8kB of RAM

Compliant with certification standards (Common Criteria, CSPS, etc.)

| 9

Binary image

AES

CODE POLYMORPHISM: WORKING PRINCIPLE

Runtime code generation for embedded systems

Polymorphic code
generation lib.

AES.c COGITO
compiler

Polymorphic
instance of AES

Polymorphic
instance of AES

Polymorphic
instance of AES

Polymorphic
instance of AES

AES.c

Binary image
Polymorphic AES

code generator

Reference version:

Polymorphic version, with COGITO:

foo.c

foo.c

AES.odo.c
Platform
compiler

Platform
compiler

Runtime code
generation

rand()

Fr
o

n
tE

n
d

M
id

d
le

En
d

B
ac

kE
n

d

© CEA 2018. All rights reserved

| 10

xor r6, r5, r8
add r4, r4, r5

CODE TRANSFORMATIONS USED AT RUNTIME

Register shuffling

RANDOM general purpose

register permutation

Instruction shuffling

independent instructions

are emitted in a RANDOM

order

Semantic variants

replacement of an

instruction by a RANDOMLY

selected semantic variant

Noise instructions

insertion of a RANDOM

number of RANDOMLY

chosen noise instructions

Dynamic noise

RANDOM insertion of noise

instructions with a RANDOM

jump

add r4, r4, r5
xor r6, r5, r8

add r11, r11, r7
xor r8, r7, r5

r4
r11 …

add r4, r4, r5
xor r6, r5, #12348
xor r6, r6, r8
xor r6, r6, #12348

add r4, r4, r5
sub r7, r6, r2
load r3, r10, #53
xor r6, r5, r8

useless
instructions

add r4, r4, r5
jump 0, 1 or 2 instructions
sub r7, r6, r2
load r3, r10, #53
xor r6, r5, r8

| 11

TOOLCHAIN CONFIGURABILITY

Period of regeneration

ℕ
(or custom regeneration policies)

Register shuffling

{𝟎, 𝟏}

Instruction shuffling

{𝟎, 𝟏}

Semantic variants

{𝟎, 𝟏, 𝟐}

Noise instructions

{𝟎, 𝟏, 𝟐} × ℝ × ℕ

Dynamic noise

ℕ

A huge number of polymorphic variants:
• 10 original machine instructions 6. 1022 variants
• AES with 278 machine instructions 𝟏𝟎𝟐𝟕

𝟒

 variants (pessimist bound)

Total configuration space:
{𝟎, 𝟏}𝟐× {𝟎, 𝟏, 𝟐}𝟐× ℝ × ℕ𝟑

| 12

• Basis: polymorphic configuration with low variability

• Acquisition of traces from Electro-Magnetic observations

• CPA on SBOX 1st output with HW model

• Experimental platform not designed for security applications (hence the weak results
on the unprotected version)

A SECURITY EVALUATION

More results in
[TACO 2019]

290 traces for unprotected AES
3 800 000 traces with low
polymorphic variability

Experimental results

• This polymorphic version
requires 13000x more
traces

• Execution time overhead:
x2.5 including generation
cost

| 13

AUTOMATED APPLICATION OF CODE POLYMORPHISM

Components evaluated: ciphers, hash functions, simple authentication, random generated codes
(Csmith*)

Declaration of polymorphism with a compiler option

• -polymorphic-function foo will compile function foo into a polymorphic implementation,
• -polymorphic will compile all functions found in the compiled source le into polymorphic implementations.

Many configurable levels of polymorphic transformations => security/performance tradeoff

• Nature and parameters of the code transformations: random allocation of registers, semantic variants,
instruction shuffling, insertion of noise instructions.

• Frequency and policy for runtime code regeneration
• Memory protections
• Leveraging OS-level features, e.g. concurrency

| 14

PERFORMANCE EVALUATION
OF RUNTIME CODE GENERATION

Configuration Execution time overhead
(geo. mean)

Size overhead
(geo. mean)

none x1.40 x1.70

low x2.31 x2.87

medium x2.45 x3.44

high x4.03 x3.81

More results in
[TACO 2019]

Overheads depend
on configuration
→ trade-off to find

Runtime code
generation done in
linear complexity

| 15

CODE POLYMORPHISM: CHALLENGES

Bottlenecks for the use of runtime code generation in embedded systems:

• Memory allocation of code buffers

• No Operating System (no malloc), no virtual memory.

• Management of memory permissions (read, write, execute)

• Runtime code generation requires write access to program memory

Polymorphic code
generation lib.

AES.c COGITO
compiler

Polymorphic
instance of AES

Polymorphic
instance of AES

Polymorphic
instance of AES

Polymorphic
instance of AES

Binary image
Polymorphic AES

code generator

Polymorphic version, with COGITO:

foo.c

AES.odo.c
Platform
compiler

Runtime code
generation

rand()

Fr
o

n
tE

n
d

M
id

d
le

En
d

B
ac

kE
n

d

| 16

MEMORY ALLOCATION OF CODE BUFFERS
Pr

o
b

ab
ili

ty

Worst case is
beyond system
memory capacity

Idea: compute a realistic code size suitable for (1-p)
coLde generations.
• Threshold 𝑝: probability of memory overflow

• 𝑝 = 10−6 by default

• Computation of the code size done automatically by
the compiler

Code size allocated

Range where an
overflow is possible

For a 100 instructions
code (low config.),
allocated size is 5x

smaller than worst case!

Distribution of generated codes sizes

Size of the program buffer

Challenges
• No Operating System, no dynamic memory allocation (malloc), no MPU

• Generated code has a variable size

• Largest possible code size does not fit in system memory

| 17

PREVENTION OF CODE BUFFER OVERFLOWS

.c
COGITO
compiler

.c
Platform
compiler

binary

RUNTIME

STATICALLY

Runtime
code

generator

Wrapper

polymorphic
instance

polymorphic
instance

polymorphic
instance
polymorphic

instance
polymorphic

instance
polymorphic

instance
polymorphic

instance

always keep space for
useful instructions
(limit polymorphism if
necessary)

computes the size of
useful instructions

puts the information
directly in runtime
code generator’s
code

①

②

③

①

②

③

| 18

MANAGEMENT OF MEMORY PERMISSIONS

Objective: Guarantee W ⊕ X and that only the generator can write into the buffer

Generation begins

Specialized runtime
code generator

Interrupt handler
Instance buffer

(memory allocated)

Check address of interrupt

good bad
X only to
W only

ERROR
①

②

Emit code

X only

W only

W only
to X only

ERROR
① X only

Generation ends

resume execution

resume execution

Check address of interrupt

②

bad good

raise interrupt

raise interrupt

| 19

• Leverage the compiler to implement counter-measures

• Automation, flexibility, configurability

• Leverage compiler analysis and compiler optimisations to improve

the effectiveness of counter-measures

Ongoing directions

• Hardware security with software-only counter-measures is

impossible challenging

• Challenge your threat model

• HW/SW co-design of countermeasures

CONCLUSION

Centre de Saclay
 Nano-Innov PC 172

91191 Gif sur Yvette Cedex

Centre de Grenoble
17 rue des Martyrs

38054 Grenoble Cedex

damien.courousse@cea.fr

SECURING EMBEDDED SOFTWARE WITH COMPILERS

Damien Couroussé | CEA / LIST / DACLE

CEA-LETI LID, Minatec Grenoble, 2019-06-28

