

A major threat against secure embedded systems

®* The most effective attacks againstimplementations of
cryptography

* Relevant against many parts of CPS/loT: bootloaders,
firmware upgrade, etc.

* Recently used to leverage software vulnerabilities [1]

In practice,

®* An attacker mostly uses logical attacks if the target is
unprotected (e.g. typical loT devices): buffer overflows,
ROP, protocol vulnerabilities, etc.

® All high security products embed countermeasures
against side-channel and fault injection attacks. E.g. Smart
Cards, payTV, military-grade devices.
® Using a combination of hardware and software
countermeasures
* Toolsfor Side-channel and fault injection are getting
really affordable

PHYSICAL ATTACKS

side channel fault injection
attacks attacks
[z,
LI

[1] A. Cuiand R. Housley, ‘BADFET:
Defeating Modern Secure Boot Using
Second-Order Pulsed Electromagnetic

Fault Injection’, presented at the
WOQT, 2017.

CEALID 2019 |2

AUTOMATED APPLICATION OF COUNTERMEASURES
WITH A COMPILER

Source code | =—
— v" Access to program’s semantics (e.g. secret variable)

7 X Security properties are not guaranteed, post compilation
Source to source il

X Corollary: can lead to bigger overheads
approach

v’ Access to program semantics
v" Control over machine code
& our approach v’ Benefit from compiler optimisations
X Implementation within the compiler is
difficult

x /¥ Focus on generic countermeasures

W

N\ | 73
D y DS
S &
A 2o ?’))‘p:

Compiler

Assembly
approach . _ _
v Naturally fits to low-level / machine code protection
010110 », schemes
. 110011 . S
Binary code %géo x (Re-)construction of a program representation is difficult

X Mostly ad hoc protection schemes

COGITO

Automated application of software countermeasures against physical attacks

=» A toolchain for the compilation of secured programs

Legacy source User security
code, unsecured annotations

LLVM compiler

COGITO

extensions

Secured
machine code

Security Performance
evaluation evaluation

Several countermeasures
® Fault tolerance, including multiple fault
injections
® Execution Integrity & Control-Flow
Integrity
® Detection of perturbationson the

instruction path, at the granularity of a
single machine instruction

* Side channel hiding

Tools for security and performance
evaluations

Based on LLVM: an industry-grade, state-of-
the art compiler (competitive with GCC)

SECURING AND VERIFYING PROGRAMS

®* Compilation: automation of the application of software countermeasures
against fault attacks and side-channel attacks

® Functional verification: of the secured machine code (equivalence with an
unprotected version of the same program)

® Security verification: correctness of the applied countermeasures w.r.t a
security model

Compiler Binary prog. Formal verification tool

Fonctional equiv.
Binary prog.
Security add-ons Tierges | g propertie
repr.

Code
+

annotations
for security
features

informal Security features

On-going jointwork with LIP6, Paris (PROSECCO — ANR 2015)

FAULT TOLERANCE

Objective: the program s not perturbed by the injection of faults

Execution time
(clock cycle)

Countermeasure based on a protection scheme formally verified for the ARM architecture
[Moro et al., 2014, Barry et al. 2016]

Automatic application by the compiler
Allow to parameterize level of protection
Generalisation of [Moro et al., 2014] to multiple faults of configurable width

Target: ARM Cortex-M cores

E Unprotected = Protected E Unprotected = Protected
35000 6000
30000 s = 5000
25000 W 4000 0
20000 @5 3000 %22 * o
15000 B2 x 2.7
W)
10000 . 2000
= = B B =
0 % — == 0 | = =
00 01 02 03 Moro et al 00 01 02 03 Moro et al

Fine-grained countermeasure applied to critical functions reduces the execution overhead below
x1.23 and size overheads below x1.12 [Barrys’ thesis, 2017]

[Moro et al.,2014] Moro, N., Heydemann, K., Encrenaz, E., & Robisson,B.(2014). Formal verification of a softwarecountermeasure againstinstruction

skip attacks.Journal of Cryptographic Engineering, 4(3), 145-156.
[Barryet al.2016]Barry, T., Couroussé,D., & Robisson,B. (2016,January).Compilation ofa Countermeasure Againstinstruction-Skip FaultAttacks.In

Proceedings of the Third Workshop on Cryptography and Security in Computing Systems (pp. 1-6). ACM. | 6

EXECUTION INTEGRITY & CFI

Objective: monitoring program execution integrity, at runtime
Combined protections:
®* Protection of the control-flow of an application (Control-Flow Integrity)

®* Beyond CFIl: protection of branchless sequences of instructions, at the granularity of
a single machine instruction

Coverage:
* Alteration of the PC (instruction skips,
branches)

® Corruption of branches
®* Alteration of branch conditions

Two implementations

® Software only countermeasure.
Implementation for ARM

* HW-SW countermeasure. Fine-grain Secured transition - Secured application componen:
execution integrity, verification & lllegal transition - faa
authentication.

SIDE CHANNEL HIDING
WITH CODE POLYMORPHISM

Code polymorphism:regularly changing the observable behavior of a program,
at runtime, while maintaining unchanged its functional properties,

Protection against physical attacks: side channel & fault attacks
®* Changes the spatialand temporal properties of the secured code
® Canbe combinedwith other state-of-the-Art HW & SW Countermeasures
Can run on low-end embedded systems with only a few kB of memory
lllustrated below: STM32F1 microcontroler with 8kB of RAM

Compliant with certification standards (Common Criteria, CSPS, etc.)

Protected

M&» M..m v MMM m’r\u WM e

W M‘ﬂ | JmmmwmMwﬁwwmmmmﬂww

} U‘npr tecteadl Il

CODE POLYMORPHISM: WORKING PRINCIPLE

Runtime code generation for embedded systems

Reference version:

foo.c

Binary image

Platform
compiler NS

Polymorphic version, with COGITO:

foo.c

COGITO A Platform Binary image
compiler -000.C compiler Polymorphic AES
code generator

@ code

Polymorphic code
generation lib.

FrontEnd
MiddleEnd

BackEnd

Polymorphic
instance of AES

© CEA 2018. All rightsreserved | 9
B

CODE TRANSFORMATIONS USED AT RUNTIME

Register shuffling Instruction shuffling
RANDOM general purpose | independentinstructions
register permutation are emitted in a RANDOM
addr4, r4, r5 S order
xor r6, r5, r8 4 ril
XOor r6, r5, r8
addrll, rll, r7 addr4, r4, r5
xor r8, r7, r5
Semantic variants Noise instructions Dynamic noise
replacement of an Insertion of a RANDOM RANDOM insertion of noise
Instruction by a RANDOMLY number of RANDOMLY Instructions with a RANDOM
selected semantic variant | chosen noise instructions jump
addré, r4, r5 addr4, r4, r5 ?dd rl:)' r14, ri. fructi
P ump o, Instructions
Xor r6, r5, #12348 sub r7, 16, r2 e Jjump or
subr7, r6, r2
Xor re, r6, r8 load r3, r10, #53 | instructions load r3. r10. #53
Xor I‘6, r6, #12348 XOr r6’ r5’ r8 oadrs, rib,

Xor r6, r5, r8

| 10

TOOLCHAIN CONFIGURABILITY

Period of regeneration Register shuffling Instruction shuffling

N (0,1} {0,1}

(or custom regeneration policies)

Total configuration space:
{0,1}*x {0,1,2}*x R x N3

Semantic variants Noise instructions Dynamic noise

{0,1,2} {0,1,2} x Rx N N

A huge number of polymorphic variants:
e 10 original machine instructions > 6.10%2 variants
 AES with 278 machine instructions = 10%7 variants (pessimist bound)

| 11

Success rate

A-SEECURITY-EVALEUATION

Basis: polymorphicconfiguration with low variability
Acquisition of traces from Electro-Magnetic observations
CPA on SBOX 1st output with HW model

Experimental platform not designed for security applications (hence the weak results
on the unprotected version)

290 traces for unprotected AES 3 800 000 traces with low

polymorphicvariability
1 N\
\ Experimental results
0,8 ®* This polymorphicversion
unprotected AES requires 13000x more
0.6 _ traces
——— configuration low ' _
0.4 ®* Execution time overhead:
x2.5 including generation
0,2 cost
0 M .
re resultsin
50 500 5,000 50,000 500,000 5,000,000 ore results

[TACO 2019]

Number of traces (log scale)

AUTOMATED APPLICATION OF CODE POLYMORPHISM

Declaration of polymorphism with a compiler option

® -polymorphic-function foo will compile function foo into a polymorphic implementation,
® -polymorphic will compile all functions found in the compiled source le into polymorphicimplementations.

Many configurable levels of polymorphic transformations => security/performance tradeoff

® Nature and parameters of the code transformations: random allocation of registers, semantic variants,
instruction shuffling, insertion of noise instructions.

® Frequency and policy for runtime code regeneration

®* Memory protections

® |everaging OS-level features, e.g. concurrency

Components evaluated: ciphers, hash functions, simple authentication, random generated codes
(Csmith*)

=
o
(2]

high
medium

high
medium
low

honhe

[s2]

[0)]

Execution time overhead
I

Size overhead

e

0 N £ 58
X7 o

A0 . 3
\Q\

pY
(0 \60\

©
0’1’6

H &
&0"0 0‘)(0

<)
Y
6\ 0‘)6\ 0

o
[l

400000

350000

300000

250000

200000

150000

100000

50000

Generation time in clock cycles

PERFORMANCE EVALUATION
OF RUNTIME CODE GENERATION

Configuration Execution time overhead | Size overhead
(geo. mean) (geo. mean)
none x1.40 x1.70
low x2.31 x2.87
medium v x2.45 x3.44
high A x4.03 x3.81
A high f'(x).=709 cyloles
v medium A | perinstruction Overheads depend
low

none

100 200

300 400 500

Number of original instructions generated

f'(x)=432 cycles
v | perinstruction

f'(x)=209 cycles
per instruction

f'(x)=22 cycles
per instruction

on configuration
— trade-off to find

Runtime code
generationdone in
linear complexity

More results in
[TACO 2019]

| 14

CODE POLYMORPHISM: CHALLENGES

Bottlenecks for the use of runtime code generationin embedded systems:
* Memory allocation of code buffers

®* No Operating System (no malloc), no virtual memory.

* Managementof memory permissions (read, write, execute)

® Runtime code generation requires write access to program memory

Polymorphic version, with COGITO:

foo.c

ol compiler Polymorphic AES
code generator

Polymorphic code

generation lib. Polymorphic

instance of AES

MiddleEnd
BackEnd

FrontEnd

| 15

MEMORY ALLOCATION OF CODE BUFFERS

Challenges
* No Operating System, no dynamic memory allocation (malloc), no MPU

® Generated code has a variablesize

® Largest possible code size does not fit in system memory
Worst case is

~ Distribution of generated codes sizes beyond system
memory capacity

B

Probability

Range where an

overflow Lipossible
'4 \

Code size allocated “ Size of the program buffer

Idea: compute a realistic code size suitable for (1-p)

coLde generations.
®* Threshold p: probability of memory overflow

* p= 107°by default -of
: : , allocated size is 5x

* Computation of the code size done automatically by smaller than worst case!

the compiler :

For a 100 instructions
code (low config.),

| 16

PREVENTION OF CODE BUFFER OVERFLOWS

STATICALLY

cogito @
compiler@

» (1) computes the size of
useful instructions

> @ puts the information
directly in runtime
code generator’s
code

RUNTIME

- N\ > @ alwayskeep space for
Runtime useful instructions
code @ (limit polymorphismif

generator necessary)
_ J

| 17

MANAGEMENT OF MEMORY PERMISSIONS

Objective: Guarantee W @ X and that only the generator can write into the buffer

Specialized runtime

Interrupt handler
code generator

Instance buffer
(memory allocated)

[Generation begins]

raise interrupt g

Check address of interrupt

(X only)

X onlyto

@ W only (Wonly)

resume execution @

<

Emit code

raise interrupt o

Check address of interrupt

W onl
ERROR bad good LN
@ to X only (X only)

r me ex ion
L esume executio @

(Generation ends)

| 18

CONCLUSION

* Leverage the compiler to implement counter-measures

* Automation, flexibility, configurability
* Leverage compileranalysis and compiler optimisations to improve
the effectiveness of counter-measures

Ongoing directions
* Hardware security with software-only counter-measuresis

impossible challenging

* Challenge your threat model
* HW/SW co-design of countermeasures

| 19

..

R Y B B | | SREEN 1 : S TEEES e RIS |, EX : : gl e - R k -
: ;hu:.‘.......'.." R F O L AR T A R S T T N L T T T T AT ‘ doararta

l | | }

. CEA LETI LID, Minatec Grenoble, 2019-06-28

.........................

. damien.courousse@cea.fr

..

