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Abstract—IoT devices are generally implemented with low-
cost embedded solutions, and connectivity and communication
capabilities are the raison d’être of such devices. But this is a
double-edged sword, since connectivity also implies (1) to open
the door to more attack possibilities, and (2) the targeted system,
once breached, can be the support for attacks at a larger scale,
possibly involving many connected systems.

Our observation is that such devices lack proper hardware and
software security protections. Bootloader and Firmware Update
(BFU) mechanisms are critical components in the software stack
of IoT devices. BFUs are a target of choice since they use the
highest privileges and are executed before the system’s security
policy is set up. An attacker able to compromise the BFU can
gain full control over the target system. Moreover, the update
mechanism often supported by the BFU is essential to ensure
devices can be upgraded and maintained for a long time. If not
properly secured, the BFU allows an attacker to gain control over
a system throughout its whole lifetime, including future upgrades.

In this paper, we provide an overview of the threats targeting
BFUs, and existing protections. We cover the hardware and
software attacks that are known to the scientific literature. Also,
we argue that vulnerabilities to physical attacks, in particular to
fault injection attacks, are mostly left un-attended.

I. INTRODUCTION

IoT devices are deployed in many everyday life situations
such as home appliances (fluid metering), leisure enhancement
(fitness trackers) or even very sensitive applications such as
healthcare with monitoring of vital signs or automated medi-
cation devices such as insulin pumps or cardiac defibrillators.
Their security is thus becoming a major challenge, with an
impact on infrastructures, privacy and user safety.

One of the goals of a secured bootloader is to setup a chain-
of-trust (CoT). Starting from the boot of the platform, the
system uses a component recognized as secure, identified as
root-of-trust (RoT). Each element in the CoT is then checked
using its predecessor in the CoT. This init phase manipulates
the RoT and is thus particularly sensitive. This phase is also
in charge of setting up hardware and software components,
access rights, system-wide data structures, and so on, which
require high privileges. Thus, the init stages of the boot process
are particularly sensitive, and may threaten the whole system’s
security if not properly secured.
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The firmware update procedure is usually associated with
the boot step, because the device is then at the right level of
protection to allow code replacement and hardware configu-
ration often required by updates. Also, during boot, no other
system services are running, making the upgrade procedure
less context-sensitive. An attacker gaining access over this
process may end up with full access to the platform. Also,
controlling the firmware update stage makes the attacker
powerful in time: she can control the whole upgrade process
and thus the future behaviour of the compromised node.

A firmware update procedure also requires a proper security
network infrastructure, e.g. for the management of security
keys, for ensuring secured communications between updates
servers and devices, etc. In this paper, we focus on the security
aspects of the IoT device itself, and the security aspects of IoT
networks are not discussed.

In this paper, we claim that, to secure IoT nodes and infras-
tructures, one needs to tackle the security of the Bootloader
and Firmware Update (BFU). We report on the security of
the BFU of IoT devices, both showing successful attacks and
protection mechanisms that are effective. We highlight the
limits of currently adopted approaches, with examples of de-
vices, applications and attacks performed on them (section II).
We show recent progress made by device manufacturers to
enhance security of BFUs by providing dedicated frameworks
and software stacks to secure BFUs (section III). Finally,
we try an orthogonal look at the security of IoT BFUs,
supporting the idea that physical attacks are currently too
poorly considered on IoT devices (section IV).

II. EXISTING ATTACKS ON IOT BFUS

The security of IoT nodes has been an important subject in
the literature since the appearance of wireless sensor networks.
Many surveys have been published, covering for example
various security aspects of IoT devices [1], [2], or specific
application domains such as fitness trackers [3] or Implantable
Medical Devices (IMDs) [4]. These studies show that many
deployed devices lack the very basic security mechanisms. For
example, firmware images are not mapped to protected mem-
ory nor checked for authenticity [4]. The same vulnerabilities
were demonstrated on the firmware update process [5]. An
attacker can thus reverse engineer a valid firmware image,
then craft a brand new malevolent firmware and update the



device with it. Often, data is not encrypted at all, or encrypted
only when received/sent on external communication channels,
which leaves them accessible to an attacker with a physical
access to the device. When cryptographic primitives are used,
implementations are often bugged so that an attacker can
bypass these mechanisms quite easily.

Even when some security elements are present, these can be
attacked and breached. Most of IoT devices have little value
for themselves or for the information they process, but can
be used as a vehicle for attacks at larger scales. In the worst
cases, a device vulnerability was demonstrated as a path to
breach into other hosts connected on the same network [6],
to take over a large network of IoT devices [7], or to launch
a Mirai-style botnet attack [8]. Yet, some devices are very
sensitive to safety or security issues, such as IMDs [4]. In this
case a security breach will lead to serious safety issues, since
a successful attacker can not only access sensitive data but
also provoke a malfunction, leading to injury or even death of
a patient. This strongly supports our idea that the BFU is the
system’s Achilles heel.

III. SECURE BFUS

The literature above makes it clear that designing more
secure BFUs is paramount. We now outline a generic architec-
ture for secure BFUs. We then make a tour of recent solutions
implementing these generic principles. Finally, we show that
this approach is still prone to attacks.

A. A Generic BFU

This model is directly inspired by the specification de-
scribed by Atmel in [9]. It supports integrity of the firmware
code present on the device, and confidentiality, integrity and
authenticity of new firmwares for updates. Our description
here leaves out platform-dependent specificities, such as: page
sizes, validity criteria, update triggering conditions, presence
of HW or SW cryptographic components, key management.
The BFU is responsible for 1) setting up HW and SW
components upon boot and 2) upon request, updating the
whole software of the platform.

To perform upgrades, a BFU interacts with a host, which
delivers new firmware instances and may trigger their instal-
lation. The host is part of the attacker model: an attacker can
corrupt it and use it to install malicious updates to devices.
During normal operation, firmware instances are encrypted us-
ing public or private key cryptography, depending on resources
available on the node (CPU, memory).

Figure 1 depicts the typical workflow of a secured
BFU. Control points are drawn as green diamonds, non-
cryptographic and cryptographic functions as white and red
boxes respectively, and start/end points in dark gray.

Upon boot, the platform enters a setup phase where mem-
ories and peripherals are initialized. This requires code to be
executed with high permission levels, e.g., with read/write
access to most of the memory space. Memory protections are
then switched appropriately: some memory regions are made
read-only, some access ports on peripherals are disabled.

When initialization is over, availability of a firmware update
is checked. If an update is available, the update process itself is
started. In the opposite case, the BFU moves to the verification
stage, checking validity of the pre-existing firmware instance.

The update is an iterative process to cope with the low mem-
ory budget of IoT devices: the new firmware is downloaded
page by page, each page being decrypted upon reception.

The verification step checks both integrity and authentic-
ity, using state-of-the-art hash functions, digital signature or
message authentication codes. This verification also occurs in
case no upgrade was triggered, so the already present firmware
image is verified for unwanted modifications. If verification is
successful, the firmware is loaded and executed. Otherwise,
it means that a malicious (or erroneous) firmware has been
loaded. Protective countermeasures can be triggered: firmware
deletion, device suicide or bricking, etc.

B. Existing Secure BFUs

The ideas of the secure BFU model of section III-A are
deployed in several works of the literature. Atmel’s application
note [9] discusses the pros and cons of different techniques
for ensuring integrity and authentication (hash functions,
signatures, MACs) as well as data and code confidentiality
(encryption). A similar workflow is found at the heart of the
SecFOTA [10]. Integrity checks and encryption/decryption are
also deployed in this solution. ST-Microelectronics’s Secure
Boot and Secure Firmware Update [11] and ARM’s Trusted
Firmware [12] are so far the most complete solutions publicly
available. They integrate various SW security mechanisms and
can leverage HW mechanisms as well, when the underlying
platform provides them.

C. Identified Vulnerabilities on BFUs

For each element in the BFU, we identify vulnerabilities,
attacks as well as possible countermeasures. Works presented
target either IoT platforms or larger platforms (PCs and
smartphones) when they could be applied to IoT-grade devices.

1) At System Initialization: Two recent contributions appear
most representative on the subject of securing the init phase.
[13] focuses on smartphone platforms, where the notions of
secure boot and RoT have been deployed thoroughly. The
authors show that, albeit these BFU-like mechanisms, many
vulnerabilities persist. Boot-related meta-data can be corrupted
so as to permit execution of maliciously-crafted code, possibly
granting unlimited access over the platform to the attacker.
Integrity checking mechanisms included in the boot process
can also be pushed to brick the device. In [14], an attack
on the init phase of an IoT-grade platform is deployed. This
attack relies on the capacity to iteratively execute, freeze and
observe the behaviour of the system, upon boot, using a debug
capability often left unattended even in deployed systems.
This cold-boot stepping technique is used to access read-
protected memories and ultimately dump the whole firmware
code residing in these memories.
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Figure 1. Flowchart of a generic BFU.

2) Attacks on the CFG: The CFG itself can be the target of
various types of attacks, identified as control-flow hijacking.
Some of these attacks can be used to force a conditional
instruction to take a particular branch of a test. More so-
phisticated attacks compromise the stack in order to deviate
the control-flow during call/return sequences. Return-oriented
Programming [15] relies on buffer overflows. With judiciously
chosen overflows, one can overwrite return addresses and
deviate the course of execution to an attacker-chosen location.
Sigreturn-ROP [16] deviates the program control to signal
handlers that encapsulate the malign code; these attacks are
more portable, as signal-handlers do not depend on the layout
of binary instructions in memory. Heap Spraying [17] uses
assumptions made on the implementation of heap manage-
ment: a buffer overflow achieved on a heap element is used
to overwrite one of the victim’s block of memory, bypassing
memory protections.

Many countermeasures can be used against such attacks.
Control-flow integrity [18] consists in dynamically checking
that a branch taken corresponds to the one expected. This
requires modifications to the protected program [19], possibly
in combination with hardware mechanisms [20]. With Control-
Flow Attestation [21], the application’s CFG is not modified
but attested by a tracer that compares the actual execution
paths with statically built references. Stack Canaries [22]
are secret values placed on the call stack, that change reg-
ularly. Whenever a call occurs, the canary is checked and
the program is exited if the observed value differs from the
expected one. Address-Space Layout Randomization [23] has
also been proposed to counteract ROPs. Randomization is
usually performed in the OS memory management procedure,
or at compile-time so as to make it application specific [24].

3) Cryptographic Primitives: Cryptographic primitives,
even though their algorithms are considered secure from the
point of view of cryptanalysis, need their implementation to
be secured against logical attacks and physical attacks. We
discuss here the security issues related to software attacks,
and physical attacks is discussed below in section IV.

Timing and cache-timing attacks are closely related to phys-
ical attacks, but we discuss them here as then can be exploited
with a logical access to the target. Timing attacks exploit the
dependency of the executed code to the data processed, in

order to reveal secret information such as a cipher key or an
authentication code. Such attacks are effective if the attacker
gets a logical access to the device, e.g. via a bootloader
console, but have also been shown effective over network
accesses [25]. Many other attacks may exploit the micro-
architecture [26], such as the variability in execution time
incurred by cache accesses, e.g. to recover secret cryptographic
keys.

IV. THE CASE OF PHYSICAL ATTACKS

Side-channel attacks [27], [28] and fault injection at-
tacks [29], [30] are the two sides of the same threat, where
the attacker exploits a physical access to the target device.
Historically, the use of such attacks was mostly restricted
to devices embedding microcontrollers such as Smart Cards,
and considered expensive because they would require expert
skills and expensive attack benches (e.g., laser injection).
However, many research works have recently demonstrated
that attack benches can be built at low cost [7], [31], or are
even commercially available [32]. Plus, IoT devices usually
present a lower system complexity as compared to high-end
computer or mobile platforms, which makes them easy targets
for these attacks. Hence, in the context of IoT security, the
threat posed by these attacks is increasing. In a network of
interconnected devices, the impact of such attacks at large
scale could be even more devastating [7].

Cryptographic primitives, which ground the security prop-
erties supported by BFUs, are known vulnerable against side-
channel [27] and fault attacks [29]. Similarly, bootloaders have
been demonstrated vulnerable to these attacks. Ronen et al.
illustrate how a side-channel attack is used to recover a master
cipher key, statically stored into the device, and then to force
the upgrade of a malicious firmware [7]; they also illustrate
how the malicious firmware can then spread over a large
network of devices. Fault injection attacks could be similarly
used to recover a secret cipher key, or break an authentication
or integrity check.

Outside of cryptographic primitives, other parts of BFUs are
sensitive to physical attacks. Side-channel attacks have been
used for example to help with the identification of the executed
instructions on small processor architectures [33], [34]. Other
techniques allow to recover branching information from PC-



style architectures [35]. Using fault injection, Timmers et al.
illustrate how to bypass a conditional branch [36], which is
typically used after a security check in a boot procedure.
They also demonstrate the modification of load instructions to
perform arbitrary modifications of the program counter [37],
which can constitute a first step towards arbitrary code ex-
ecution. Similar attacks have also been successfully used to
exploit software vulnerabilities during boot [31].

The research on this topic is vivid. Due to lack of space,
we cite only a few research works that could be applied to
BFUs: de Clerq and Verbauwhede provide a comprehensive
survey on control flow integrity, covering fault injection attacks
and existing countermeasures [20]. Belleville et al. propose
a generic software countermeasure against side-channel at-
tacks [38]. Werner et al. propose a systematic approach for
code confidentiality, authenticity and integrity, against logical
and fault injection attacks [39].

V. CONCLUSION

In this paper, we have drawn a panorama on the security
of BFUs on IoT platforms. First, we have shown that the
security of BFUs is not sufficiently addressed in IoT devices.
We have sketched a typical workflow for a BFU supporting
integrity of the existing firmware, and authenticity, integrity
and confidentiality of firmware upgrades. We have outlined the
capabilities offered by security-oriented frameworks recently
proposed. These should be deployed as widely as possible, in
order to provide a minimal security layer. Finally, we have
shown that despite these improvements, much work remains
to be done, in particular to address physical attacks which
represent a significant threat on IoT devices.
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