
1

Code Polymorphism Meets Code Encryption: Confidentiality and
Side-Channel Protection of Software Components

LIONEL MOREL and DAMIEN COUROUSSÉ, Univ. Grenoble Alpes, CEA, List, France
THOMAS HISCOCK, Univ. Grenoble Alpes, CEA, Leti, France

In this paper, we consider that, in practice, attack scenarios involving side-channel analysis combine two successive phases:
an analysis phase, targeting the extraction of information about the target and the identification of possible vulnerabilities;
and an exploitation phase, applying attack techniques on candidate vulnerabilities. We advocate that protections need to cover
these two phases in order to be effective against real-life attacks. We present PolEn, a toolchain and a processor architecture
that combine countermeasures in order to provide an effective mitigation of side-channel attacks: as a countermeasure against
the analysis phase, our approach considers the use of code encryption; as a countermeasure against the exploitation phase,
our approach considers the use of code polymorphism, because it relies on runtime code generation, and its combination
with code encryption is particularly challenging. Code encryption is supported by a processor extension such that machine
instructions are only decrypted inside the CPU, which effectively prevents reverse engineering or any extraction of useful
information from memory dumps. Code polymorphism is implemented by software means. It regularly changes the observable
behaviour of the program, making it unpredictable for an attacker, hence reducing the possibility to exploit side-channel
leakages. We present a prototype implementation, based on the RISC-V Spike simulator and a modified LLVM toolchain. In
our experimental evaluation, we illustrate that PolEn effectively reduces side-channel leakages. For the protected functions
evaluated, static memory use increases by a factor of 5 to 22, corresponding to the joint application of code encryption and
code polymorphism. The overhead, in terms of execution time, ranges between a factor of 1.8 and 4.6.

CCS Concepts: • Security and privacy→ Embedded systems security.

Additional Key Words and Phrases: Side-Channel, Code Encryption, Code Polymorphism

ACM Reference Format:
Lionel Morel, Damien Couroussé, and Thomas Hiscock. 2021. Code Polymorphism Meets Code Encryption: Confidentiality
and Side-Channel Protection of Software Components. Digit. Threat. Res. Pract. 1, 1, Article 1 (January 2021), 29 pages.
https://doi.org/10.1145/3487058

1 INTRODUCTION

Side-channel attacks (SCA) have been extensively studied in the past three decades as they are a significant
threat to many computing architectures, but multiple challenges still lie ahead of us in order to build computing
systems that are safe from such threats. Side-channel attacks extract sensitive information from measurements of
physical quantities such as power consumption or electromagnetic (EM) emanations. The attacker relies on two,
key capabilities: i) the observation of the physical quantities during the execution of a sensitive computation on
the target; and ii) the analysis of measured physical quantities, often called traces, with the aim of establishing a
relationship with hypothetical sensitive values. The side-channel research community is currently focused on
the development of powerful analysis techniques and countermeasures against side-channel analysis.

Authors’ addresses: Lionel Morel; Damien Couroussé, Univ. Grenoble Alpes, CEA, List, Grenoble, France, F-38000; Thomas Hiscock, Univ.
Grenoble Alpes, CEA, Leti, Grenoble, France, F-38000.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page.
Copyrights for third-party components of this work must be honored. For all other uses, contact the owner/author(s).
© 2021 Copyright held by the owner/author(s).
2576-5337/2021/1-ART1
https://doi.org/10.1145/3487058

Digit. Threat. Res. Pract., Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://doi.org/10.1145/3487058
https://doi.org/10.1145/3487058

1:2 • Lionel Morel, Damien Couroussé, and Thomas Hiscock

In this paper, we focus on the practical security of software components against side-channel attacks that are
based on the observation of quantities such as power consumption or EM emanations. Without loss of generality,
we consider that an attack scenario is the combination of two, successive phases: i) analysis, and ii) exploitation.
In the first phase, the attacker gathers information about the target to identify the elements that will be the focus
of the second phase. Firmware extraction and its reverse engineering are the crux of the analysis phase, which has
stimulated many binary analysis studies [36]. Once the software implementation of the target has been reverse
engineered, the attacker can extend the analysis looking for software vulnerabilities [18], or leverage hardware
attacks to exploit software vulnerabilities [19]. Furthermore, an attacker can leverage side-channel observations
to learn more about the implementation of the target: for example, to identify which security functions are
implemented, when they are launched, and on which hardware blocks they are executed [26]. Moreover, most
cryptographic primitives, if unprotected, have a specific side-channel signature that an expert can easily identify.

In the research literature, much attention is dedicated to the exploitation phase. However, it was demonstrated
that reverse engineering, hence the analysis phase, is of strong importance in practical attacks (see Section 2.3). In
practice, if enough implementation details of the target are known, the actual side-channel analysis is, according
to Bronchain and Standaert, “usually close to trivial” [12]. As a consequence, practical security to protect against
side-channel attacks must be supported by a first line of defence against the analysis phase. However, this should
not be understood as an argument in favour of security by obscurity. Instead, we assume that security evaluations
in the worst-case security setting should be possible using, for example, a white-box analysis. Ultimately, our
goal is that, even if the attacker has access to the full specification of the target, they cannot easily extract
meaningful information during the analysis phase. This implies that strong cryptography is the only way to
protect against a knowledgeable attacker. In this paper, we use code encryption to ensure program confidentiality,
which introduces a strong line of defence against the analysis phase.

Countermeasures against side-channel attacks mostly target implementations of cryptographic primitives
(see Section 2.4). However, many countermeasures are ad hoc: they seek to protect one or a few primitives, and
require close attention to their application. Improving the security of a set of software components requires
generic countermeasures that can be applied without specific knowledge of the components in question. Hiding
countermeasures, in particular, are interesting because unlike masking countermeasures, their application does
not require dedicated knowledge of the protected component, and hence they can be used to harden various
software components. They introduce a first level of hardening against a side-channel attack, their application
can be automated by the compiler [1, 3, 10], and they can be combined with a masking countermeasure for higher
levels of security [2].

In this paper, we seek to identify practical and effective ways to protect embedded systems against a complete
attack scenario leveraging side-channel attacks, encompassing the analysis and the exploitation phases described
above. We study a combination of code encryption (as a protection against the analysis phase) and code polymor-
phism (as a protection against the exploitation phase). Code polymorphism is particularly interesting for fast and
easy deployment of countermeasures as it moves the burden from the programmer to the compiler. However, the
most security-effective forms of code polymorphism involve runtime code generation. In order to provide a full
protection against the analysis phase, runtime code generation needs to support code encryption as well. This
raises several challenges that we address in this paper. The extension of our work to include other conventional
side-channel protections, such as masking, then becomes straightforward.

Summary of contributions. We present PolEn, a compiler toolchain and a processor architecture that together
improve the practical security of software components in embedded systems against reverse engineering and
side-channel attacks. PolEn demonstrates the effective combination of two countermeasures: code encryption,
and code polymorphism.

Digit. Threat. Res. Pract., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Code Polymorphism Meets Code Encryption: Confidentiality and Side-Channel Protection of Software Components • 1:3

• We extend the architecture of a RISC-V 32-bit processor to execute encrypted instructions, and to support
runtime generation of encrypted code. We demonstrate how runtime code generation can be combined
with code encryption. As the runtime code generator and parts of the program that are re-generated at
runtime are encrypted in memory, all forms of code extraction are prevented: offline code extraction from
ROM, and online extraction at runtime.

• Our support for runtime generation of encrypted code is applied to code polymorphism. We present a full
LLVM toolchain for the automatic application of code encryption and code polymorphism countermeasures.
As countermeasures are entirely implemented in the hardware, compiler and via runtime support, the
burden for the developer is reduced.

• Finally, we evaluate our implementation in terms of security and performance. In particular, the security
evaluation illustrates that code encryption alone does not protect against side-channel attacks, which
emphasises the importance of combining code encryption with other protections. The cost of re-generating
new polymorphic instances is also discussed.

The rest of the paper is organised as follows. Section 2 introduces our security model, and some background
knowledge concerning both code encryption and code polymorphism. Section 3 presents our proposed combina-
tion of code polymorphism and encryption, along with an overview of PolEn, which implements this combination.
Section 4 details our implementation, and gives an evaluation of PolEn, both in terms of performance and security.
Section 5 discusses some of the implications of our approach, and Section 6 relates it to previous works. Finally,
Section 7 concludes.

2 BACKGROUND

2.1 Platform and Security Model

In this work, we target typical IoT-grade system-on-chip (SoC) platforms comprising a microcontroller and a set
of off-chip memories (e.g., DRAM and flash). The only hardware requirements of PolEn are i) a secure storage
of encryption keys (e.g., memory, or dedicated registers) that can only be accessed by the processor; and ii) a
secure random number generator (RNG) that an attacker cannot probe or tamper with—this latter assumption is
typical of secure systems. We assume that an attacker has the following capabilities: they can read the content of
off-chip memories (DRAM and flash), and dump program code stored in these memories; and they can perform
side-channel attacks, e.g., by probing the chip for EM emanations or power consumption. Timing attacks and
logical side-channels (cache attacks, branch prediction, ...) are out of the scope of this work. Finally, we assume
no particular protection of data in memory. This is an important aspect of a system’s security in general, which
is left out of the scope of this work.

2.2 The Analysis Phase and Protections Against Reverse Engineering

Reverse engineering encompasses a variety of techniques that can be used to retrieve a meaningful source code
representation of a program that is otherwise only accessible in binary form. An attacker usually starts by
disassembling the extracted binary code to obtain an assembly version. Then, they try to decompile it, in order
to build a high-level source code version of the intended behaviour. Various techniques have been proposed to
counter reverse engineering. Obfuscation is a set of source code modification techniques that aim to make the
behaviour of a program unintelligible [6, 15]. Its main advantage is that it is a software-only technique and, thus,
is easy to apply to an existing code base and port to a wide range of targets. Many software approaches have been
proposed to counter reverse engineering, among which Instruction Set Randomisation (ISR) has been widely
studied [8, 14]. The idea underlying the latter technique is to dynamically change opcode encodings, making the
instruction memory harder to decode. These techniques can be applied by a virtual machine, an interpreter or a
processor. Unfortunately, these protections do not resist real-life code injection or code-reuse attacks [33, 35, 38].

Digit. Threat. Res. Pract., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:4 • Lionel Morel, Damien Couroussé, and Thomas Hiscock

Memory encryption [23] is arguably the strongest countermeasure against reverse engineering. Security is
founded on robust cryptographic constructions: even if an adversary can access memory, they would still have to
know the secret key to access data. Memory encryption can be implemented entirely in software, demonstrated
by the full-disk encryption that is provided by common operating systems. Usually, data is decrypted while being
transferred from persistent to dynamic memory (e.g., flash to DRAM). A stronger option is to encrypt data until
it reaches the memory ports of the CPU [40], although it should be noted that this requires an in-depth re-design
of the memory architecture, which is not easy with complex architectures.
Code encryption hardens programs against reverse engineering, as well as code reuse and code injection

attacks. Here, programs are encrypted before deployment and remain encrypted in memory. Code encryption can
be performed at the granularity of a memory page. Sinha et al. propose extensions to the memory architecture
that are specifically adapted to both the architecture (in particular the memory management unit) and the OS
(which manages encryption keys) [39]. However, this approach assumes the use of virtual memory, making it
difficult to port to IoT-grade microcontrollers. Code decryption can be performed on an instruction-by-instruction
basis, within the CPU, after an instruction is fetched [24, 39, 43]. All such approaches require modifications
to the CPU’s micro-architecture, and thus need to be anticipated in the processor design flow. We adopt this
latter approach to code encryption in PolEn: our encryption scheme is based on the work of Hiscock et al. [24],
which strikes a balance between portability, including to low-grade IoT-like platforms, and the ability to trade-off
security and performance, by manipulating programs from within the compiler. PolEn can also be adapted to
support the encryption scheme used by Werner et al., which supports code confidentiality and control-flow
integrity [43].

2.3 On the Importance of the Analysis Phase in a Side-Channel Attack

Worst-case security models assume that the attacker has detailed knowledge of the target, which lessens the
importance of the analysis phase. In certification schemes, evaluators are given detailed knowledge of the security
target, and verify the compliance of its description [5]. Similarly, most research assumes full knowledge, and
control over the evaluated target. As a consequence, far less attention is paid to mitigation against the analysis
phase than the exploitation phase. However, several articles that describe the use of side-channel analysis in
practical attack scenarios underline the importance of reverse engineering. For example, Bronchain and Standaert
analyse an implementation of AES hardened against side-channel attacks [12]. After a preliminary in-depth
investigation of the implementation of the countermeasures, they identify an efficient side-channel analysis to
carry out in the exploitation phase. In a similar vein, Oswald et al. extract the secret key of a digital locking
system using an EM side-channel attack [32]. Most effort was required to reverse engineer the hardware, then the
software implementation of the firmware. The extraction and detailed analysis of the firmware is described by
the authors as an essential step before they could exploit side-channel analyses. Interestingly, they report that the
exploitation phase of the attack was able to extract the secret key from the product based on a small (150) number
of observations. This again underlines that the exploitation phase of a side-channel attack is often low cost,
once the implementation details of the target are known. Recently, Lomné and Roche reported a vulnerability in
the Google Titan Security Key’s secure element, based on a side-channel analysis, supported by power and EM
measurements [28]. Although the exploitation of the vulnerability requires some expertise in cryptanalysis, their
paper again underlines the amount of efforts spent in reverse engineering the target.

2.4 The Exploitation Phase and Protections Against Side-Channel Attacks

SCA techniques exploit the observable behaviour of the attacked program. The attacker can use any physical
quantity that can be measured on the target system: EM emanations, power consumption or even sound. Typically,

Digit. Threat. Res. Pract., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Code Polymorphism Meets Code Encryption: Confidentiality and Side-Channel Protection of Software Components • 1:5

measurements, often called traces, are analysed to recover secret keys used in cryptographic computations. PolEn
protects sensitive data (typically encryption keys) from SCAs.
The efficiency of side-channel analysis relies on the ability of the attacker to gather multiple traces from the

target. They then try to correlate these traces with hypothetical intermediate values of the target program (e.g.,
AES encryption). The value that correlates best with observations usually corresponds to the secret key. If there
are several plausible key values, the attacker can proceed to an exhaustive enumeration to identify the secret key.
Protections against SCA usually fall into two categories: masking or hiding [29]. Masking splits sensitive

variables used in a computation into multiple shares, and randomisation is used to make each share statistically
independent from the others. Hiding techniques will either try to reduce leakage or add noise to it to make
the attack significantly harder. Many countermeasures that are based on software hiding involve some form of
execution diversity in order to produce side-channel observations that are difficult to correlate to the secret data.
Some approaches statically pre-compute different versions of the same function [3, 41]. At runtime, every time
the protected function is executed, one of these versions is randomly selected. Another approach consists in
inserting so-called chaff instructions in between normal instructions [4]. The aim is to introduce fake key values
that could exhibit higher correlation values than the secret key.

Code polymorphism is probably the most powerful form of software hiding [1, 17]. The core idea is to regularly
generate new versions of secure code, called polymorphic instances, by means of runtime code generation driven
by random data. All of these polymorphic instances are functionally equivalent, but differ in their implementation,
such that each execution leads to a different (side-channel) observation. Used alone, code polymorphism raises
the bar for a side-channel attacker. Moreover, the behavioural variability it provides could make it more difficult
to reverse engineer the protected component in the analysis phase of an attack. However, further discussion
of this point is beyond the scope of our paper. Code polymorphism as used in PolEn, i.e., as a countermeasure
against side-channel attacks, has been discussed and evaluated in previous work [10]. In the present paper, we
focus on the combination of code encryption and runtime code generation, which supports code polymorphism.

3 POLEN
3.1 General Approach

PolEn is composed of twomain components: a dedicated compiler toolchain that supports runtime code generation
(it also includes a minimal execution runtime), and an extended processor architecture that provides hardware
support for the execution of encrypted code. Code encryption and code polymorphism are automatically applied
by the toolchain. These countermeasures can be applied to any source-level target function, either independently
or in combination. The user can select target functions to harden at compile time, thanks to dedicated compiler
options or source code annotations. Code polymorphism is implemented for each target function by a runtime
machine code generator, referred to as a Specialised Generator of Polymorphic Code (SGPC), which produces
multiple, new polymorphic instances of code that implement the desired functionality (Section 3.2). Code
encryption is implemented at compile time by the toolchain and a post-compilation patching tool (Section 3.3).
When combined with code polymorphism, code encryption requires dedicated runtime support (Section 3.4).

In the remainder of this paper, we use the term static to refer to compile-time code transformations, while the
term dynamic refers to the runtime technique used to generate polymorphic instances.
The PolEn architecture is shown in Figure 1. We begin with a coarse-grained overview of the framework,

the implementation details are presented in Section 4.1. Code hardening starts with a set of functions that are
identified as critical for the system’s security. In the example, these are contained in the aes.c file. The architecture
produces a binary code main.poly.enc.elf with the desired protection. The compile time process is divided
into four phases. In the first phase (src-to-src), the compiler, llvm_polen, which is called with the option -poly,
generates an SGPC of each function to be hardened by code polymorphism. In the second (src-to-obj), the

Digit. Threat. Res. Pract., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:6 • Lionel Morel, Damien Couroussé, and Thomas Hiscock

ru
n
ti
m
e

llvm polen
aes

.poly.c
ld

foo.ollvm polen

-poly binEncryptor
main
.poly
.enc.oco

m
p
ile

ti
m
e

CPU
w/polen

mem

main

generate

load

RISCV32-polen

foo.c

key
IV

generator

(spike)

polymorphic

instances
encrypted

aes.c main
.poly
.enc.elf

main
.poly
.enc.elf

src-to-obj link encryptionsrc-to-src

aes
.enc.o

llvm polen
-encrypt

runtime
.lib.c

runtime
.lib.a

Fig. 1. Overview of the PolEn approach: complete toolchain and runtime execution. The input file aes.c represents source

code to be hardened by PolEn, and foo.c is other application code with no security requirements.

compiler generates an object file for each input file, and prepares the target functions for encryption. If necessary,
code encryption is also applied to parts of the runtime library (runtime.lib.c). The third phase (link) is an
unmodified link stage that uses the standard GNU linker. Finally, code encryption is performed at the binary level
by a separate tool (binEncryptor), which produces encrypted code using device-specific keys. PolEn is highly
configurable. The user can choose to apply either code encryption or code polymorphism, or combine them at
different granularities. For example, it can be used to encrypt polymorphic instances, but not the SGPC itself.
The runtime part of PolEn is a combination of hardware and software components. On the software side,

the SGPCs periodically produce new polymorphic instances in the form of binary code. If both encryption and
code polymorphism are applied, these instances are encrypted. In the latter case, encryption is handled by the
SGPC, before code is written to program memory and executed. On the hardware side, the CPU is modified
to include support on-the-fly decryption of instructions. This allows encrypted programs to be executed, both
those generated statically (e.g., the SGPC or other procedures without code polymorphism) and dynamically
(polymorphic instances). The hardware is extended with encryption support for the code emission of encrypted
polymorphic instances as they are produced by the SGPC (Section 3.4.3).

3.2 Code Polymorphism

When code polymorphism is applied to a target function at the source level, the original function is replaced
by a wrapper and an SGPC (src-to-src, Figure 1). The wrapper has the same prototype as the original target
function. It encapsulates the SGPC such that a call to a polymorphic function is transparent from the point of
view of the rest of the program. At runtime, the wrapper i) executes the SGPC to generate a new polymorphic
instance, according to a regeneration policy defined by the user; and ii) executes the polymorphic instance. These
two phases can be re-ordered interchangeably.

Digit. Threat. Res. Pract., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Code Polymorphism Meets Code Encryption: Confidentiality and Side-Channel Protection of Software Components • 1:7

#pragma polen
int f_secure(int a,

int b){
int c = a^b;
a = a+b;
a = a%c;
return a;

}

(a) f secure.c

<f>:
xor a2 ,a1,a0
add a0 ,a1,a0
rem a0,a0 ,a2
ret

(b) f.asm

Traditionnal
Compiler

Polymorphic
Compiler

int f_secure(int a, int b){
if(SHOULD_BE_REGENERATED ()){

SGPC_f_secure ();
}
return code_f(a,b);

}

code code_f[CODE_SIZE];

void SGPC_f_secure (){
reg_t r[] = {0, 1, 2, 3, 15};
shuffle_regs(r);
push_callee_saved_registers ();
cdg_gennoise ();
variant_XOR_i_1_32_iRRR(a2 , a1 , a0);
cdg_gennoise ();
ADD_i_1_32_iRRR(a0, a1, a0);
cdg_gennoise ();
REM_i_1_32_iRRR(a0, a0, a2);
cdg_gennoise ();
pop_callee_saved_registers ();
cdg_gennoise ();
JALR_i_1_32_iIRR(zero , ra, 0);
...
CDGEND ();

}

(c) f.poly.c<code_f >:
push a5,a7 ,a8,a9
xor a2,a1 ,#42 ;semantic variant
xor a5,a5 ,a0 ; ... for xor
xor a5,a5 ,#42 ; ... cont’d
add a0,a1 ,a0
sub a9, #127 ;noise instruction
rem a0,a0 ,a2
add a7,a9 ,#5 ;noise instruction
xor a8 ,#3 ;noise instruction
pop a5,a7 ,a8,a9
ret

(d) Code of one particular instance,
as generated dynamically in memory
by ONE call to SGPC f secure.

original function, to be protected.

Un-protected code, as generated by
”traditionnal” compiler.

Polymorphic instance generator and
wrapper for the f secure function.

Runtime

Fig. 2. Code polymorphism: general overview.

Therefore, a call to the wrapper function always leads to the execution of code that has the same functionality
as the original function. Each generated instance is functionally equivalent to the original function, but uses
different code shapes in order to confuse the attacker. Several code transformations can be produced by the SGPC.

The SGPC is a C program that is specific to the current target polymorphic function. Its only input is random
data (typically, from a RNG) that is assumed to be out of the control of an attacker. The SGPC generation is
managed by a dedicated compiler backend that emits code written in C rather than assembly or object code. The
original machine instructions are replaced by calls to instruction-level code generation functions that handle
variability.

Runtime variability is handled as follows: at the instruction level, the SGPC can introduce a sequence of
instructions that are a semantically equivalent variant of the original instruction. At the basic-block level, instruc-
tion shuffling can re-order independent instructions. At the function level, register shuffling can be performed.
Each new generation produces a new permutation of registers, and this new permutation is used to generate all
of the instructions in the current instance. At the basic-block level, noise can be inserted via carefully-chosen
instructions that do not alter the program’s behaviour. A register liveness analysis is performed that allows noise
and functional instructions to share the same set of registers. The amount of noise to be inserted is determined
each time a new instance is generated, and is determined separately for each location in the code where noise
is inserted. We do not provide more details about code polymorphism here, as the approach has already been
described in full, and evaluated in the literature [10].

Digit. Threat. Res. Pract., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:8 • Lionel Morel, Damien Couroussé, and Thomas Hiscock

Example. Figure 2 shows the process for an example function f_secure. In Figure 2(a), the programmer identifies
the function f_secure to be protected with the polen pragma. Figure 2(b) shows the unprotected code that the
compiler would normally generate for f_secure. The PolEn toolchain statically generates the code f.poly.c

shown in Figure 2(c). The original f_secure function is replaced by a wrapper, f_secure, that is called in place
of the original function. Every time it is called, this wrapper checks if a new polymorphic instance should be
generated. Runtime code generation is performed by the SGPC_f_secure function, which emits polymorphic
instances in the code_f buffer. The wrapper then jumps to the code_f code and executes it. Figure 2(d) shows one
instance of code that is generated dynamically.

The structure of the function SGPC_f_secure follows the structure of the function f_secure. For each instruction
in the expected assembler code, there is a corresponding call to an instruction-level generator. For example,
the instruction add a0, a1, a0 corresponds to the macro ADD_i_1_32_iRRR(a0,a1,a0). For some instructions,
including add, these encoding macros produce the binary of the corresponding instruction. For others, macros
generate semantic variants: a call to variant_XOR_i_1_32_iRRR(a2, a1, a0) may introduce one of many variants,
instead of the original instruction.

SGPC_f_secure also includes calls to cdg_gennoise(), shuffle_regs() and CDGEND() functions from the PolEn
runtime API. Respectively, these generate noise instructions, perform register shuffling and carry out accounting
when polymorphic instances have been generated (Section 3.4).

3.3 Code Encryption

Code encryption is a countermeasure that is implemented to protect against memory extraction and reverse
engineering. The idea is to encrypt code (off-line) using a symmetric cryptographic primitive and keep the secret
key (required for decryption) inside the CPU. Thus, an attacker who succeeds in extracting the contents of
memory still needs to break the cryptographic primitive in order to recover any useful data.

3.3.1 Formalism. For the sake of generality, we introduce Definition 3.1 as an abstract representation of an
encryption primitive. We describe PolEn with respect to this formalism, in order that the description remains
independent of the underlying primitive.

Definition 3.1. Wedefine an instruction-level encryption primitive as the 3-tuple of keyed functions (I,T𝑒𝑛𝑐 ,T𝑑𝑒𝑐):

• I𝑘 (𝐼𝑉) ↦→ 𝑠𝑡𝑎𝑡𝑒 is the cipher initialisation function. From a key 𝑘 and an initialisation vector (𝐼𝑉), it
generates an initial state.

• T𝑒𝑛𝑐, 𝑘 (𝑠𝑡𝑎𝑡𝑒,𝑚) ↦→ (𝑠𝑡𝑎𝑡𝑒 ′, 𝑐) is the encryption function. From the cipher current state and an input message,
it produces a new state and a ciphertext.

• T𝑑𝑒𝑐, 𝑘 (𝑠𝑡𝑎𝑡𝑒, 𝑐) ↦→ (𝑠𝑡𝑎𝑡𝑒 ′,𝑚) is the decryption function. From the cipher current state and an input cipher-
text, it produces a new state and a plaintext.

• The secret key 𝑘 has a width of 𝜆 bits.
• 𝑠𝑡𝑎𝑡𝑒 is a fixed-length vector that allows the encryption of arbitrary-length sequences.

The functions (I,T𝑒𝑛𝑐 ,T𝑑𝑒𝑐) from Definition 3.1 operate on fixed-length input messages (e.g., 128 bits). In
order to support variable-length messages, an input message is divided into chunks of fixed length and processed
block-by-block by chaining the cipher state.

In this section, we assume that messages are aligned with the chunk size. Section 5.3 discusses such assumptions.
The example below shows how a message made of 𝑛 + 1 parts would be encrypted and decrypted:

Digit. Threat. Res. Pract., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Code Polymorphism Meets Code Encryption: Confidentiality and Side-Channel Protection of Software Components • 1:9

Encryption Decryption
I𝑘 (𝐼𝑉) → 𝑠𝑡𝑎𝑡𝑒0 I𝑘 (𝐼𝑉) → 𝑠𝑡𝑎𝑡𝑒0
T𝑒𝑛𝑐, 𝑘 (𝑠𝑡𝑎𝑡𝑒0,𝑚0) → (𝑠𝑡𝑎𝑡𝑒1, 𝑐0) T𝑑𝑒𝑐, 𝑘 (𝑠𝑡𝑎𝑡𝑒0, 𝑐0) → (𝑠𝑡𝑎𝑡𝑒1,𝑚0)
T𝑒𝑛𝑐, 𝑘 (𝑠𝑡𝑎𝑡𝑒1,𝑚1) → (𝑠𝑡𝑎𝑡𝑒2, 𝑐1) T𝑑𝑒𝑐, 𝑘 (𝑠𝑡𝑎𝑡𝑒1, 𝑐1) → (𝑠𝑡𝑎𝑡𝑒2,𝑚1)
...

...

T𝑒𝑛𝑐, 𝑘 (𝑠𝑡𝑎𝑡𝑒𝑛,𝑚𝑛) → (𝑠𝑡𝑎𝑡𝑒𝑛+1, 𝑐𝑛) T𝑑𝑒𝑐, 𝑘 (𝑠𝑡𝑎𝑡𝑒𝑛, 𝑐𝑛) → (𝑠𝑡𝑎𝑡𝑒𝑛+1,𝑚𝑛)
In the context of PolEn, we require the additional property that an encrypted instruction can be patched after

code emission. Formally, we assume that there exists a pair of functions (⊕, ⊙) such that:

T𝑒𝑛𝑐, 𝑘 (𝑠𝑡𝑎𝑡𝑒,𝑚0 ⊕ 𝑐) = T𝑒𝑛𝑐, 𝑘 (𝑠𝑡𝑎𝑡𝑒,𝑚0) ⊙ 𝑐 (1)

Any primitive that encrypts and decrypts using an XOR with a pseudo-random sequence (such as stream ciphers
or AES in counter mode) satisfies this requirement, where the functions ⊕ and ⊙ are both the binary xor function.

An on-the-fly decryption of a list of encrypted instructions requires the cipher to be in the correct state. In the
formalism of Definition 3.1, there are two ways to generate a valid state:

(1) start a new sequence from an initialisation vector 𝐼𝑉 by calling the I𝑘 (𝐼𝑉) function, or
(2) extend an existing sequence by calling T𝑒𝑛𝑐 (𝑠𝑡𝑎𝑡𝑒,𝑚) (or T𝑑𝑒𝑐), which updates the cipher state.

When the processor executes sequential instructions, extending the sequence (i.e., calling T𝑑𝑒𝑐) is the default
choice. However, when a control-flow instruction is taken (be it a conditional or unconditional branch, a jump,
call, or ret instruction), the correct state (i.e., the one used during encryption) must be restored according to the
current execution path to decrypt the target instruction. This observation suggests that encryption should be
applied at the granularity of basic blocks in the source program. We proceed as follows: an 𝐼𝑉 is associated with
each basic block and encryption starts with the state I𝑘 (𝐼𝑉). We choose to store IVs at the beginning of every
basic block so that decryption can generate the initial state. For each control-flow instruction taken, the CPU
reads the IV at the target destination, and triggers a reset of the cipher state by calling the I𝑘 (𝐼𝑉) function for
the destination basic block.

3.3.2 Control-Flow Graph (CFG) Preparation. Here we describe the modifications to the target program, required
to support our code encryption scheme. These modifications are performed at compile time before the application
of encryption by the binEncryptor tool. They are implemented as a series of passes that are added to the compiler’s
backend. The overall compilation flow is shown in Figure 4.
First, we reduce the number of basic blocks by applying the following merging strategy. Consider two basic

blocks B1 and B2 such that B1 jumps to B2 (see Figure 3a and Figure 3b). B1 and B2 can be encrypted/decrypted
by the same encryption sequence if B1 is the only predecessor of B2. In this case, our compiler merges B1 and
B2. This pass is optional, but enabling it can bring significant performance improvements if the initialisation
function I𝑘 of the cipher significantly increases execution time.

A second pass ensures that all of the basic blocks with multiple predecessors are only reachable via an explicit
control-flow instruction. Earlier compiler passes can remove unnecessary control-flow instructions, especially
when a basic block B2 is the fallthrough of a predecessor B1, as illustrated in Figure 3c. As execution at the end of
B1 reaches its successor B2 without a control-flow instruction, the cipher can take different state values when
reaching B2. Thus, if needed, the second pass appends a direct control-flow instruction to each basic block (see
Figure 3d). These additional control-flow instructions instruct the CPU to reset the cipher state to ensure the
correct decryption of instructions.

A third pass adds a slot for an IV at the start of each basic block. The upper parts of the IV slot are filled with
a special value that does not map to an instruction, and which can be matched by the binEncryptor program

Digit. Threat. Res. Pract., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:10 • Lionel Morel, Damien Couroussé, and Thomas Hiscock

B0:
code
bne r2, r3, B2

B1:
jal B2

B2:
code

(a) Initial BB Fallthrough

B0 1:
code
bne r2, r3, B2
jal B2

B2:
code

(b) After Merging

B0:
code
jal B2

B1:
bne r0, r1, B3

B2:
add r0, r0, r0
jal Bxx

B3:
nop

(c) Initial BB Fallthrough

B0:
code
jal B2

B1:
bne r0, r1, B3

B2:
add r0, r0, r0
jal Bxx

B3:
nop

jal B2

(d) Corrected BB Fallthrough

Fig. 3. Example of modifications of the CFG, required for efficient encryption [24].

FrontEnd BackEnd

E
ar

ly
P

as
se

s

B
B

M
er

gi
n

g

L
at

e
P

as
se

s

IV
S

lo
t

In
se

rt
io

n

C
la

n
g

C source files

IR
O

p
ti

m
iz

er

MiddleEnd

.c

object files

.o Linker

Encrypted
Binary

key

IV generator

In
se

rt
F

al
lT

h
ro

u
gh

B
ra

n
ch

es

”Ready For
Encryption” Binary

Binary
Encryptor

Fig. 4. The program encryption workflow. Elements related to PolEn are shown in red boxes.

(Section 3.3.3). The rest of the IV is filled with the number 𝑛𝑏𝐼 of instructions contained in the basic block. The
whole IV slot is replaced by a full IV during binary encryption.

3.3.3 Encryption. The binary produced by the compiler is then fed to a binary encryption tool, along with an
encryption key (see far right of Figure 4). The encryption tool scans the binary file for IV slots. Whenever it
reaches a slot: i) it reads the last part of the slot as the number of instructions 𝑛𝑏𝐼 contained in the upcoming
block; ii) it generates a new random IV value; iii) it fills the current IV slot with it; iv) it initialises its own software
implementation of the cipher, by calling I𝑘 with this IV; and v) it encrypts the 𝑛𝑏𝐼 instructions following the IV
slot.

3.3.4 Execution of Encrypted Code. Encrypted instructions are decrypted on the fly, as they are fetched by the
CPU. The processor is modified as shown in Figure 5a. The Fetch stage incorporates a decryption module,
labelled T𝑑𝑒𝑐, 𝑘 . By default, T𝑑𝑒𝑐, 𝑘 produces the plain-text instruction from the encrypted instruction obtained
from memory. The result is fed to the processor’s Decode stage. T𝑑𝑒𝑐, 𝑘 also generates a new cipher state from
its input, and is now ready to decrypt the next instruction. If a control-flow instruction is taken, the CPU first
checks if an encryption disable signal is active, and switches to plain-text execution mode, if needed. If decryption
continues, the cipher state is initialised by running the I𝑘 module with an IV read in the program’s memory. The
execution then continues normally by calling T𝑑𝑒𝑐, 𝑘 .

3.3.5 Calling Encrypted Functions. A call/return to/from two encrypted functions works exactly like other
control-flow instructions. The callee’s code starts with an IV and the corresponding control-flow instruction from

Digit. Threat. Res. Pract., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Code Polymorphism Meets Code Encryption: Confidentiality and Side-Channel Protection of Software Components • 1:11

branch
taken

Fetch Stage Decode StagePC Generation

State

Ik

State

data
Tdec,k

IMem

IV

instruction

(a) Modifications to the processor’s pipeline Fetch

stage to decrypt encrypted instructions.

control

operand

Execute Stage WriteBackDecode Stage

Ik

State

data
Tenc,k

State

PRNG

Other
Execute
Results

Stage

IV

(b) Modifications to the processor’s Execute stage to encrypt

instructions.

Fig. 5. PolEn modified hardware.

the caller resets the cipher state with this IV. Returning from the callee, the cipher state needs to be reset with a
correct state. An IV is inserted by the compiler after each call.

3.3.6 Calling Unencrypted Functions. The performance/security compromise can be fine-tuned by the program-
mer. They can define functions that can be called from secured code, but that do not need to be protected
themselves. To allow this to happen, the instruction set architecture (ISA) is extended with two instructions
disable_enc and enable_enc which, respectively, disable and enable encryption. In practice, the programmer only
needs to specify functions that need protection. The compiler then generates specific call/return sequences for
unprotected functions, following the approach described in the following.

Consider the example given in Figure 6. The dark red (resp. light yellow) block indicates that the corresponding
code is encrypted (resp. not encrypted). Instructions and IVs added to the original code are highlighted by the
orange rectangle.
The secured function f_sec calls an unprotected function f_unsec. The left side of Figure 6 shows the initial

state. Here, the call to f_unsec is simply a matter of jumping to the first instruction of the function.
When f_sec is encrypted and f_unsec is unencrypted, special care is taken to prepare f_sec (see the right-hand

side of Figure 6). Prior to the call to f_unsec, the processor is decrypting f_sec’s code. Before executing the
call to f_unsec, the processor is set to switch to non-decrypting on the next control-flow instruction. This
change of state is triggered by the disable_dec instruction before the call. The call itself (a) effectively switches
the processor to its non-decrypting state, and execution of f_unsec then continues, without decryption. When
returning from f_unsec (b), the processor returns to its decrypting state. This action cannot be triggered from
f_unsec, since the compiler does not necessarily know about its calling context. Thus, f_sec resets the processor
to the correct decrypting state. This reset is performed by inserting the sequence of two instructions labelled (c).
enable_dec switches back to the decryption state during the added jump. This control-flow instruction switches
the processor to its decrypting state, and begins execution of an extra basic block that starts with inst_j, the
instruction that follows the call to f_unsec in the original code. Together, three instructions are added to the call
sequence: disable_enc, enable_enc and a jump to the added basic block.

The question of determining which functions should be encrypted or not is discussed in Section 5.4.

Digit. Threat. Res. Pract., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:12 • Lionel Morel, Damien Couroussé, and Thomas Hiscock

f_sec:
...
BB_0:

inst_0
...
inst_i
call f_unsec
inst_j
...
branch BB_n

BB_1:

f_sec:
...

BB_0:
IV_0
inst_0
disable_enc
call f_unsec

.LBBRET:
IV_ret
inst_j
...
branch BB_n

BB_1:

Unprotected version.

enable_enc
j .LLBRET

(a)

(b)

Protected version.

(c)

f_unsec:
i_0
...
ret

f_unsec:
i_0
...
ret

Fig. 6. Handling calls to unprotected functions. When calling an unprotected function f_unsec from a secured function

f_sec, encryption needs to be disabled and re-enabled from the calling context. Encrypted code is shown in dark red and

non-encrypted code is shown in light yellow.

3.4 Encrypted Polymorphic Code

We now describe in detail how code polymorphism and code encryption are combined in PolEn. PolEn is highly
configurable, and the programmer can choose to activate each countermeasure independently on parts of the
protected program. E.g., one can selectively encrypt parts of the code. This is discussed in Section 3.5. In the
following, we present the full combination of code polymorphism and encryption.

3.4.1 Static Code Generation. By default, all static code produced by the compiler for secured functions is
encrypted. For polymorphic code, this includes wrappers, SGPCs and the entire PolEn runtime library. The latter
is prepared for encryption separately, then linked with each application. The whole binary can then be encrypted
using the application’s key.

3.4.2 Dynamic Generation of Encrypted Code. Any code produced dynamically, i.e. polymorphic instances, needs
to be encrypted on the fly. This is particularly important as an attacker with read access to memory could easily
dump it at a well-chosen time when an instance of the f_secure function has just been produced, and reverse
engineer it. This process is implemented as a modification of the polymorphic code generation technique described
in Section 3.2. Instead of the polymorphic instance shown in Figure 2, it produces an encrypted polymorphic
instance, as shown in Figure 7b. At the beginning of each basic block (including the beginning of the function
itself), a new IV is inserted. Then, each instruction generated by the SGPC is encrypted on the fly. Figure 7b shows,
for each instruction, the sequence of encrypted words and a comment indicating the instruction it corresponds to.
We now describe how these encrypted instances are generated, together with the required hardware and

software support included in PolEn.

3.4.3 Hardware Support. From the hardware point of view, we extend the Execute stage of our processor with
two modules: an encryption module, denoted T𝑒𝑛𝑐, 𝑘 ; and a cipher state initialisation module, denoted I𝑘 . Both
are shown in Figure 5b. A pseudorandom number generator block is used to generate fresh IVs, which are used
to generate an initial cipher state through I𝑘 and are written to memory at the beginning of new basic blocks.
Decrypted instructions obtained from the decode stage (e.g., read from registers) are passed to T𝑒𝑛𝑐, 𝑘 to obtain
the encrypted version.

Digit. Threat. Res. Pract., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Code Polymorphism Meets Code Encryption: Confidentiality and Side-Channel Protection of Software Components • 1:13

Table 1. ISA extension for PolEn.

initBB This instruction is called when emitting the code of a new basic block, it: i) initialises the cipher
state with a new, randomly-chosen IV; and ii) writes this IV at the beginning of the generated
basic block.

enc_word This instruction encrypts the content of a register and writes the corresponding encrypted
word into another register. It is used to encrypt instructions of polymorphic instances.

enable_dec This instruction enables decryption of incoming instructions. Decryption starts when the
following control-flow instruction is executed. The target of the control-flow instruction is,
thus, expected to be encrypted.

disable_dec This instruction disables decryption of incoming instructions. As enable_dec, decryption is
disabled when the following control-flow instruction is executed. The target of the control-flow
instruction is expected not to be encrypted.

This hardware support is accessed from software through an ISA extension that includes four new instructions,
which are described in Table 1. This extension includes instructions that are used specifically to generate
polymorphic instances, and others that are needed to activate/de-activate encryption, as presented in Section 3.3.6.

3.4.4 Software Support. From the software point of view, the generation of encrypted polymorphic instances is
implemented within the PolEn runtime library. Encryption is performed on a per-basic block basis, as follows.
For each basic block 𝐵𝐵𝑖 , we start by: i) randomly choosing a new IV 𝐼𝑉𝑖 ; ii) writing 𝐼𝑉𝑖 at 𝐵𝐵𝑖 ’s location in
memory; and iii) initialising the cipher state with I𝑘 (𝐼𝑉𝑖). These actions are performed through a single initBB

instruction.
Then, for each instruction making up 𝐵𝐵𝑖 , we: i) write the encoding of the instruction into a general purpose

register; ii) encrypt the content of this register by feeding it into T𝑒𝑛𝑐, 𝑘 , using the enc_word instruction; and iii)
write this content back to memory.

3.4.5 Forward Jumps. Special attention is needed when generating code for jump instructions, as consideration
must be given to the position of the target address compared to the address of the jump. Consider a jump
instruction j @𝑡 , targeting address @𝑡 , that we want to generate at address @ 𝑗 . This generation is performed by
the macro JUMP(@𝑡) in the PolEn runtime library.
In the case of a backward jump, i.e. @𝑡 < @ 𝑗 , the target instruction has already been generated and @𝑡 is

known. The jump instruction can thus be produced immediately when JUMP(@𝑡) is called.
In the case of a forward jump, i.e. @𝑡 > @ 𝑗 , the target instruction has not yet been generated. Because

noise instructions can be later added (code between @ 𝑗 and @𝑡), the value of @𝑡 cannot be known. When
called, JUMP(@𝑡) encrypts the word with value 0x0 with the current state of the cipher, writing this value
T𝑒𝑛𝑐, 𝑘 (𝑠𝑡𝑎𝑡𝑒@𝑗 , 0x0) to@ 𝑗 . When execution of the SGPC is complete,@𝑡 is known. The encoding of the jump
instruction, including the correct @𝑡 is computed and patched at location @ 𝑗 . To do this, we use the property of
the cipher shown in Equation 1. More precisely, the value 𝑥 = T𝑒𝑛𝑐, 𝑘 (𝑠𝑡𝑎𝑡𝑒@𝑗 , 0x0) is first obtained from memory.
Then, the value is patched by computing 𝑥𝑝𝑎𝑡𝑐ℎ = 𝑥 ⊙ @𝑡 . From Equation 1, we can verify that:

𝑥𝑝𝑎𝑡𝑐ℎ = T𝑒𝑛𝑐, 𝑘 (𝑠𝑡𝑎𝑡𝑒@𝑗 , 0x0) ⊙ @𝑡

= T𝑒𝑛𝑐, 𝑘 (𝑠𝑡𝑎𝑡𝑒@𝑗 , 0x0 ⊕ @𝑡)
= T𝑒𝑛𝑐, 𝑘 (𝑠𝑡𝑎𝑡𝑒@𝑗 ,@𝑡)

Finally, the value 𝑥𝑝𝑎𝑡𝑐ℎ is written back to memory at location @ 𝑗 . This technique is used for all types of jumps
(relative, absolute, conditional), and implemented in the dedicated CDGEND function in the PolEn runtime library.

Digit. Threat. Res. Pract., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:14 • Lionel Morel, Damien Couroussé, and Thomas Hiscock

void SGPC_f_secure (){
reg_t r[] = {0, 1, 2, 3, 15};
shuffle_regs(r);
push_callee_saved_registers ();

start_of_bb = (int*) cdg_asm_pc;
__asm__ __volatile__ ("mv␣t4,␣%0"

:
: "r"(start_of_bb)
: "t4");

INIT_BB ();

cdg_gennoise ();
variant_XOR_i_1_32_iRRR(a2, a1, a0);
cdg_gennoise ();
ADD_i_1_32_iRRR(a0, a1, a0);
cdg_gennoise ();
REM_i_1_32_iRRR(a0, a0, a2);
cdg_gennoise ();
pop_callee_saved_registers ();
cdg_gennoise ();
JALR_i_1_32_iIRR(zero , ra, 0);
...
CDGEND ();

}

(a) SGPC used in the example given in Figure 2.

<code_f >:
0x4bb535d6 ; IV1
0x17a3e975 ; IV2
0x2885fa3d ; IV3

0xff64fdac ; encrypted push a5,a7,a8,a9
0xf12f3809 ; encrypted sem variant for ...
0xb5b21433 ; ... xor a2, a1, a0
0x799f4c1a ; ... cont'd
0x6cdaa8e6 ; encrypted add a0,a1,a0
0xdacd347d ; encrypted noise sub a9, #127
0x4901978a ; encrypted rem a0,a0,a2
0xb3b5f0f9 ; encrypted noise add a7,a9 ,#5
0xec171ee3 ; encrypted noise xor a8 ,#3
0xd7c0b5ca ; encrypted pop a5,a7,a8,a9
0x5c84f0b1 ; encrypted ret

(b) Code (memory dump) of a polymorphic encrypted

instance, for the example given in Figure 2. All instructions

are encrypted in memory. Comments are added manually

for reference.

Fig. 7. Dynamic code generation.

3.4.6 The PolEn Runtime API With Code Encryption. The SGPC function that produces encrypted instances is
adapted as shown in Figure 7a. It is important to note that this code is generated by the static compiler, with no in-
tervention from the programmer. A key difference with the version presented in Section 3.2 is that each basic block
now includes an initialisation phase, implemented using the initBB instruction presented above. Furthermore,
the generation of encrypted instructions is encapsulated into encoding macros, e.g., ADD_i_1_32_iRRR(a0,a1,a0)
and now incorporates the three steps described in Section 3.4.4. Figure 7b shows an encrypted instance produced
by SGPC_f_secure. Each instruction is encrypted in memory and a comment is added in the Figure to give the
corresponding decrypted instruction, for readability.

3.5 PolEn Configurability

One key aspect of PolEn is its high degree of configurability, which is due to the following elements. First, code
encryption and code polymorphism can be activated independently. This creates four high-level configurations,
labelled unprotected, encrypted, polymorphic and polen. In setting unprotected, no countermeasure is
applied, while in setting encrypted (resp. polymorphic) only code encryption (resp. code polymorphism) is
activated. In setting polen, both code encryption and code polymorphism are activated. Moreover, the programmer
can choose to encrypt: i) only the polymorphic instance; ii) only the SGPC and wrapper; or iii) both. With respect
to code polymorphism, the developer can activate each form of variability (noise, semantic variants, instruction
shuffling, register shuffling) independently. In particular, for noise, he or she can also configure the amount of
noise, and its probability model separately. Finally, the instance regeneration frequency is configurable. This
gives the programmer great flexibility in trade-offs between security and performance and the ability to adapt
PolEn to the application context and corresponding threat model.

Digit. Threat. Res. Pract., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Code Polymorphism Meets Code Encryption: Confidentiality and Side-Channel Protection of Software Components • 1:15

4 PROOF OF CONCEPT AND EXPERIMENTAL EVALUATION

We have implemented a proof of concept implementation of PolEn based on the RISCV architecture and the
LLVM compiler. Section 4.1 describes this setup. It also discusses the implementation of the encryption/decryption
modules as well as the corresponding hardware configurations we have considered. Finally, it describes the
construction of simulated side-channel traces needed for our security evaluation. Sections 4.2 and 4.3 give a
security and a performance evaluation of PolEn, respectively.

4.1 Implementation and Experimental Setup

Simulation. All our hardware modifications have been implemented as extensions to the Spike Instruction
Set Simulator, a functional simulator that supports both 32- and 64-bit base ISAs, with multiple extensions [37].
PolEn is based on the single core RV32IM ISA [42] (I for Integer and M for Multiplication).

Toolchain. The PolEn toolchain comprises a set of passes that are added to the LLVM compiler [27], at both
backend and middle-end levels. PolEn is based on LLVM version 7.0.0 and Spike 1.0.1-dev implementing the
RISC-V Unprivileged ISA v2.0. All library, application and secured code is compiled in -O2, but all optimisation
levels are supported.

Choice of cipher. So far, PolEn has been presented as an abstract representation of the underlying encryption
primitive introduced in Section 3.3.1. Decryption is performed on a critical path of the processor, namely, in the
Fetch stage. An ideal cryptographic primitive would have a small footprint to limit the impact on the existing
logic, and at the same time have a low latency that would not impact the processor’s critical path.

Given these constraints, we choose the Trivium [20] stream cipher for the implementation of encryption and
decryption modules. It is both lightweight and has low latency [34]. The number of bits decrypted per-cycle can
be configured, which allows a trade-off between area and performance. It should be noted that Trivium uses
80-bit keys, which is low considering current key size standards and recommendations. However, to the best of
our knowledge, it has not been subject to any significant attacks. That being said, Trivium can be replaced by any
other stream cipher in PolEn, as shown in the next paragraph. Section 5.3 also discusses the use of block ciphers.
Stream ciphers (such as Trivium) work by generating a pseudorandom digit stream that is XOR-ed with the

input message to produce the ciphertext. Usually, they are built around two functions: init generates an initial,
random-looking state, while update produces a new state and generates random output. Thus, with respect to the
framework presented in Section 3.3.1, a stream cipher is expressed as:

• I𝑘 (𝐼𝑉) = init(𝑘, 𝐼𝑉)
• T𝑒𝑛𝑐, 𝑘 (𝑠𝑡𝑎𝑡𝑒,𝑚) = (𝑠𝑡𝑎𝑡𝑒 ′, 𝑜𝑢𝑡𝑝𝑢𝑡 ⊕𝑚), where (𝑠𝑡𝑎𝑡𝑒 ′, 𝑜𝑢𝑡𝑝𝑢𝑡) = update(𝑠𝑡𝑎𝑡𝑒)
• T𝑑𝑒𝑐, 𝑘 (𝑠𝑡𝑎𝑡𝑒, 𝑐) = T𝑒𝑛𝑐, 𝑘 (𝑠𝑡𝑎𝑡𝑒, 𝑐)

With a stream cipher, I𝑘 (𝐼𝑉) is usually a slow operation, while T𝑒𝑛𝑐, 𝑘 and T𝑑𝑒𝑐, 𝑘 are fast. As I𝑘 (𝐼𝑉) is only called
when a control-flow instruction is taken, most of the time, we expect to be running the fast operations T𝑒𝑛𝑐, 𝑘 and
T𝑑𝑒𝑐, 𝑘 .

Evaluated configurations. Our evaluations are performed on the configurations listed in Table 2. These six
configurations are based on the activation (or not) of code polymorphism and code encryption, respectively.
Concerning code polymorphism, the insertion of noise instruction is defined by a simple probabilistic model

as follows. Noise instructions are inserted in between two original instructions with a probability of 2−𝑝 , and
the number of noise instructions inserted is 2𝑁 , where 𝑁 is a uniform integer variable in [1;𝑁𝑚𝑎𝑥]. All of our
evaluations are run with noise nop instructions only, 𝑝 = 3, and 𝑁𝑚𝑎𝑥 = 5.
With respect to code encryption, we evaluate two configurations of the cipher, denoted *_9 and *_35. These

correspond to hardware configurations where the initialisation of the cipher takes 9 (resp. 35) CPU cycles. When

Digit. Threat. Res. Pract., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:16 • Lionel Morel, Damien Couroussé, and Thomas Hiscock

Table 2. PolEn configurations used in the evaluation.

configuration code polymorphism encryption
activated activated target re-init cost (in 𝑛𝑏𝐼)

unprotected × × – –
encrypted_9 × ✓✓✓ ✓✓✓ function 9
encrypted_35 × ✓✓✓ ✓✓✓ function 35
polymorphic ✓✓✓ × – –

polen_9 ✓✓✓ ✓✓✓
✓✓✓wrapper
✓✓✓ SGPC
✓✓✓ instance

9

polen_35 ✓✓✓ ✓✓✓
✓✓✓wrapper
✓✓✓ SGPC
✓✓✓ instance

35

there is no need to distinguish between *_9 and *_35, we note this as encrypted or polen. Configurations *_35
are obtained with a Trivium instance that generates 32 bits of pseudorandom stream per clock cycle, which
is the smallest configuration in terms of hardware area that can keep up with the CPU’s instruction and data
throughput. The *_9 configurations are obtained with a Trivium instance that generates 128 bits of pseudorandom
stream per clock cycle. Although these configurations require more hardware resources, the re-initialisation of
the cipher (the function I𝑘) is much faster. While adding more bits per clock cycle is possible, it is not worth the
hardware overhead [24]. Thus, *_35 (resp. *_9) correspond to an area optimised (resp. performance optimised)
version of the countermeasure.

In our evaluation setting, when encryption is combined with code polymorphism, for each secured function,
code encryption is applied to the wrapper, the SGPC and the polymorphic instances.

Production of simulated side-channel traces. We obtain side-channel traces with the Spike simulator. These
traces include information for each instruction executed. The RV32IM ISA includes the following four types of
instructions: R, I, S and U. Each has a different format and, of particular interest for us, addresses different registers
(see Figure 8, left side). Samples recorded into traces contain five, 32-bit integer values <PC,INSN,r0,r1,r2>where:
PC is the current value of the Program Counter (the address of the current instruction); INSN is the content of the
instruction register (i.e. the encoding of the currently-executed instruction, as decrypted by the T𝑑𝑒𝑐 module);
and r0, r1 and r2 are values of registers (Figure 8, right side), depending on the instruction type. These values
are recorded after the instruction has fully propagated to the CPU and memory. One sample is generated for
each instruction execution. An exception is the initBB instruction, for which we generate three samples. These
correspond to the three CPU cycles associated with the memory reads required to obtain the IV value. We do
not differentiate configurations with different initialisation costs (Table 2) as Trivium’s Initialisation Vector is a
public value; hence, initialisation is completely independent of the target’s secret values, and is not considered
in our side-channel analysis. It should be noted that this does not impact our security analysis and reduces the
overall size of traces.

4.2 Security Analysis

This section presents a security evaluation of an AES implementation. This implementation is the same as the
AES 8-bit implementation evaluated in Section 4.3 (aes-8-bits). Our analysis focuses on an implementation
of AES as this cryptographic primitive is widely used in many embedded systems, ranging from IoT devices
to mobile and desktop computers, and its original implementation does not include any side-channel attack

Digit. Threat. Res. Pract., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Code Polymorphism Meets Code Encryption: Confidentiality and Side-Channel Protection of Software Components • 1:17

31 27 26 25 24 20 19 15 14 12 11 7 6 0 r0 r1 r2
funct7 rs2 rs1 funct3 rd opcode R-type rs1 rs2 rd

imm[11:0] rs1 funct3 rd opcode I-type rs1 0 rd
imm[11:5] rs2 rs1 funct3 imm[4:0] opcode S-type rs1 rs2 rd

imm[31:12] rd opcode U-type 0 0 rd

Fig. 8. RV32-IM instruction encoding formats (left). Sample content, as a function of the instruction type. Samples are of the

form <PC,INSN,r0,r1,r2> (right).

countermeasures. The security against side-channel attacks of the AES cipher has been studied for several years,
and it is often used as a reference for security evaluation.
We base our analysis on simulation traces obtained by instrumenting the Spike simulator (section 4.1). Since

Spike is a functional simulator and does not include details of the processor’s microarchitecture, our traces are
free from the side-effects, e.g., resulting from pipelined execution of instructions. Our simulated traces include,
for each CPU cycle, the value of the PC register and the binary encoding of the executed machine instruction. It
is common practice to assume that, on a processor without side-channel protection, addresses and values on
instruction buses may leak. Furthermore, we include the value of the destination and source registers, as recent
research findings show that such microarchitecture elements may be vulnerable [7]. Finally, traces are noise-free.
In terms of security, this provides a pessimistic bound on the results of the evaluation. This issue is discussed in
more detail later in this section.
The side-channel simulation generates traces of 32-bit unsigned integer values that represent internal data

manipulated by the processor.
For the analysis, we use the Hamming Weight of 32-bit sample values. This choice follows standard practice

which assumes that, in software implementations, leakage follows a Gaussian distribution centred on theHamming
Weight of the target secret value [29].

4.2.1 Leakage Analysis. The signal-to-noise ratio (SNR) is commonly used as a tool to detect the presence of
trivial information leakage in side-channel traces [29]. It is also used to select regions of interest in order to
reduce the computational complexity of attacks such as Correlation Power Analysis (CPA). However, in the
presence of noise-free leakage traces, the SNR computation will produce infinite values, which make it unsuitable
for the purposes of our evaluation. Instead, we use the Normalized Inter-Class Variance (NICV) metric. The NICV
was initially introduced by Bhasin et al. as a metric agnostic to the leakage model, providing a conservative
bound for any other leakage analysis based on a specific model [11]. In other words, the use of the NICV provides
a conservative security metric of the leakage analysis that a real-life attacker could carry out.
For each time sample 𝑡 , the NICV is estimated with the following formula:

NICV[𝑡] ≜
V
𝑍

(
E [X[𝑡] |𝑍 = 𝑧]

)
V(X[𝑡]) , (2)

where X[𝑡] is a random, continuous variable denoting the side-channel observation measured for sample 𝑡 , 𝑍 is a
random discrete variable denoting the sensitive target, E denotes the expectation and V denotes the variance.
When the sample 𝑡 contains no leakage information, X[𝑡] does not depend on 𝑍 and the numerator is zero. It
should be noted that the amount of noise in the measured traces directly impacts global variance V(X[𝑡]): the
higher the measurement noise, the lower the NICV value. In the absence of measurement noise, as is the case
in our experimental setup, global variance V(X[𝑡]) is only impacted by variability due to computations, i.e.,
variability due to the data that is processed and variability due to the possible presence of countermeasures. It

Digit. Threat. Res. Pract., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:18 • Lionel Morel, Damien Couroussé, and Thomas Hiscock

(a) NICV, unprotected version. (b) NICV, encrypted version.

(c) NICV, polymorphic version. (d) NICV, polen version.

Fig. 9. Results of the leakage analysis on 50,000 traces for all key bytes (ranging from byte 0 in blue, to byte 15 in red).

should also be noted that such a leakage analysis is sometimes called a vertical analysis, because it is computed
on a per-sample basis. As a consequence, if information leakage is spread across different samples 𝑡 , the measured
NICV value is degraded, because of the spread.

Figure 9 illustrates the results of the leakage analysis for the four experimental configurations unprotected,
encrypted, polymorphic and polen. For unprotected and encrypted, which are not protected against side-
channel analysis, SNR values are 1.0 for all key bytes. This result suggests strong information leakage, and we
demonstrate below that this can be exploited by a chosen-plaintext attack (CPA). Results for encrypted illustrate
that encrypted programs can still leak information in a side-channel analysis.

Results for the two polymorphic configurations, polymorphic and polen, demonstrate a greatly reduced NICV,
to the point that it is impossible to identify significant points of interest for side-channel attacks. Peaks can be
identified at the very beginning of the NICV trace, for the least-significant key bytes (in blue). However, these
peaks are not correlated to secret values, and we verified that this potential leakage could not be exploited in a
CPA (cf. Section 4.2.2 and Figure 10). In a configuration where the NICV does not exhibit strong information
leakage, an attacker can still carry out a visual analysis of side-channel traces to identify trace features that could
be exploited e.g., to re-align traces with more sophisticated processing methods. However, this attack scenario is
difficult to assess with objective metrics, and hence not considered in this study. Another option for the attacker is
to perform an exhaustive attack on the full set of samples available in the traces. In this case, the quantity of data
necessary for a successful attack depends on measurement conditions (notably, the amount of measurement noise
and intrinsic noise due to parasitic switching activity in the target), which directly impact the computational
complexity. We evaluate the feasibility of this attack scenario below.

4.2.2 CPA Analysis. We evaluated a first order CPA against the same four implementations. In this case, the attack
targets the output of the first SubBytes function of the AES encryption. Figure 10 presents the results of the attack
on the first key byte. For each configuration, left plots illustrate the evolution of the correlation as a function of
the number of traces, and right plots illustrate correlation curves for 500 and 100,000 traces for unprotected and
polymorphic, respectively. An attack on the other key bytes leads to similar results; these results are not included
for the sake of conciseness. In unprotected, the absence of measurement noise in simulation traces means that
the maximum correlation value for the correct key is around 0.5, and this becomes distinguishable from the
wrong key hypothesis with 100 traces. Likewise, encrypted is also vulnerable to a CPA. This result was expected,

Digit. Threat. Res. Pract., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Code Polymorphism Meets Code Encryption: Confidentiality and Side-Channel Protection of Software Components • 1:19

Table 3. Benchmarks used for the PolEn evaluation.

Nature Name of the benchmark Origin
block cipher aes-t-table, camellia, 3des mbed-TLS [31]
block cipher aes-8-bits, misty, simon custom
stream cipher trivium estream [20]
hash function md5, sha256 mbed-TLS [31]

since the CPA targets data manipulated by the program and, in our implementation, program encryption does
not protect the data path of the processor. In the case of measurements on a real circuit, the presence of noise
degrades the effectiveness of a CPA (for example, noise due to the measurement setup and switching activity,
independent of the targeted computations [29]). Hence, our results provide a conservative bound on real security
in a real attack scenario. In the worst case, a secret key can be extracted from an unprotected circuit in a few
dozen traces, compared to thousands or millions of traces in more complex situations.

Our results also illustrate the effectiveness of code polymorphism to protect the AES implementation against
a CPA. Figure 10(c–d) shows that the correlation value for the secret key cannot be distinguished from other
key hypothesis up to approximately 80,000 traces for polen. For polymorphic, the secret key can be found with
100,000 traces. However, in Figure 10(c, left), the correlation of the correct key is undistinguishable from the other
key hypotheses due to higher incorrect correlation peaks for samples in the trace window [0; 500] (Figure 10(c,
right)). Our results are congruent with prior findings on similar software countermeasures [1, 3, 10].

4.3 Performance Analysis

Performance is evaluated as a function of three main criteria: memory usage, execution time and hardware
overhead. The latter is discussed in Section 4.3.3. We evaluate the first two using the nine programs listed in
Table 3. Five of these programs are taken from the mbed-TLS suite [31], one is a software implementation of
trivium, taken from the estream suite [20] and the last three are custom implementations of the aes-8-bits,
misty [30] and simon [9] protocols.

Our results illustrate the impact of using the configurations listed in Table 2 and presented in detail in Section 4.1.
The reader should keep in mind that all of our evaluations are based on the Spike simulator, which is not cycle
accurate.

4.3.1 Memory Usage. We distinguish between statically and dynamically allocated memory. Static memory
includes the PolEn runtime library and the code generated statically (the wrapper and the SGPC) for each secured
function. Dynamically-allocated memory corresponds to the space needed to hold polymorphic instances. We
discuss both types of memory usage in the following, starting with static memory.
Currently, the PolEn library’s size is 9.4 kB, which is suitable for low-memory on-chip embedded systems.

This version was used in all evaluations and is not considered as a factor in analyses.
For each program in our test suite, we measure the size of the object file containing the code generated for

the secured function. In Figure 11a, we report the overhead of this object file compared to the unprotected
version, for encrypted, polymorphic and polen. For encrypted, the overhead simply consists of the IVs that
are added at the beginning of each basic block in the secured function. On average, this overhead is inversely
proportional to the number of instructions in each basic block, shown as a red line. We added a constant-size IV
to each basic block, regardless of its size. Consequently, the bigger the basic blocks, the better it compensates
for the introduction of IVs. In both polymorphic and polen cases, the same overhead is observed, in this case,
amplified by the size of the wrapper and SGPC code that is now included.

Digit. Threat. Res. Pract., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:20 • Lionel Morel, Damien Couroussé, and Thomas Hiscock

(a) CPA, unprotected version.

(b) CPA, encrypted version.

(c) CPA, polymorphic version.

(d) CPA, polen version.

Fig. 10. Results of the CPA analysis on 500 traces for unprotected and encrypted, and on 100,000 traces for polymorphic

and polen. The CPA targets the secret key byte 0 (analyses of the other key bytes give similar results). The correlation curve

is plotted in black for the correct key, and in grey for the wrong key hypothesis.

For polen, there is an overhead related to the size of the statically-built binary code of the secured function,
of the order of 5 to 22. This overhead includes the application of code polymorphism itself, and encryption of
both the wrapper and the SPGC. Although this is considerable, it should be put in perspective, as PolEn is only
applied to a part of a larger code base, depending on the ratio of protected and unprotected code.

Digit. Threat. Res. Pract., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Code Polymorphism Meets Code Encryption: Confidentiality and Side-Channel Protection of Software Components • 1:21

(a) Overhead related to the size of the object file generated

for encrypted, polymorphic and polen.

(b) Overhead related to dynamicmemory used to generate

polymorphic instances for polymorphic and polen.

Fig. 11. Memory usage of PolEn, expressed as a factor of the size of the object file for unprotected (left Y-axis). The red line

shows the average number of instructions per basic block (right Y-axis).

The footprint of protected applications varies at runtime. This overhead depends on the quantity of dynamic
memory needed to generate polymorphic instances. It is a function of the structure of the protected program,
notably the size of basic blocks, their number and, thus, the number of IVs. Figure 11b illustrates this for each
example by giving the overhead related to the size of polymorphic instances compared to the size of the statically-
generated code in the unprotected version. Both polymorphic and polen versions are plotted. For polen
(resp. polymorphic), this overhead varies between a factor of 1.45 and 1.6 (resp. 1.42 and 1.5). This factor is
highly influenced by the addition of IVs, as can be observed by comparing the red line (showing the average
number of instructions per basic block) to bar graphs. This point becomes clearer when comparing the simonand
3desprotocols. For simon, there are approximately 100 instructions per basic block, and the overhead is far bigger
than for 3des, which has slightly less than 500 instructions. Both variability in the source used to generate
polymorphic instances, and the amount of noise instructions inserted highly influence this overhead. This
obviously needs to be taken into account when addressing the security/performance compromise, which is
specific to each application.

4.3.2 Execution Time. We now evaluate the impact of the different configurations of PolEn on execution time.
It should be recalled that, as Spike is not cycle accurate, all evaluations of execution times are measured as an
equivalent of number of instructions executed, denoted 𝑛𝑏𝐼 . However, our evaluation still provides a realistic
approximation of the performance overheads on simple cores (in-order, single issue). The study of PolEn on
more advanced processors (superscalar, out-of-order) is not in the scope of this paper.
First, we measure the overhead when executing a secure function compared to the unprotected version.

When code polymorphism is used, only the cost of executing a polymorphic instance is taken into account, and
not the cost of generating the instance. This is shown in Figure 12, which reports execution time overheads for
configurations encrypted_9, encrypted_35, polymorphic, polen_9 and polen_35 as increasingly darker grey
bars. The reported numbers are averaged over 100 executions of the secured function. The graph also reports
(the red line), the number of control-flow instructions taken during the execution of the unprotected secured
function. This is an important point to note as taken control-flow instructions trigger the re-initialisation of the
Trivium module and, thus, account for a major part of the execution time overhead. For polymorphic instances,
the number of Trivium re-initialisations is identical for all configurations. For encrypted and polen, the number

Digit. Threat. Res. Pract., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:22 • Lionel Morel, Damien Couroussé, and Thomas Hiscock

Fig. 12. Execution time overhead of the secured function for encrypted, and polymorphic instances for polymorphic and

polen. Bars (indexed on the left Y-axis) represent overheads compared to the unprotected. The red line (indexed on the right

Y-axis) gives the number of control-flow instructions taken during the execution of secured functions.

of taken control-flow instructions directly impacts execution time, because each of these instructions trigger
a re-initialisation of the decryption module. For aes-t-table, camellia, 3des and trivium, between 10 and 23
control-flow instructions are taken during the execution of the whole program. In these cases, the overhead is
below 1.8. On the other hand, for aes-8-bits, the overhead increases by a factor of up to 4.6, due to the very high
number of control-flow instructions taken (over 506). Overall, in our benchmarks, executing secured functions
incurs costs of up to a factor of 4.6 compared to the original, non-secured code. Of course, these numbers need to
be weighed against the frequency at which the secured function would be used in a real-life scenario.

Second, we evaluate the cost of generating a new polymorphic instance compared to executing an unprotected
version of the original function. Results are shown in Figure 13. Overheads are reported for polymorphic, polen_9
and polen_35 (from white to light and dark grey, respectively) compared to unprotected. sha256, aes-8-bits
and simon provide the lowest overheads of 8.1, 26.55 and 10.25, while other cases peak at a factor of 70 (for
PolEn_35). The latter finding is due to the presence of highly iterative loops. In practice, the cost of generating a
loop is of the order of magnitude of the number of instructions contained in the loop body. On the other hand, the
cost of executing the generated loop depends both on the number of instructions contained in the loop body and
on its iteration bounds. As an example, the sha256 encrypt function contains two loops totalling 16 operations,
which need to be generated dynamically (one operation corresponds to multiple machine instructions), in addition
to the loop control structure. However the corresponding loop bounds lead to the execution of the same operation
several hundreds of times, which makes runtime code generation much cheaper w.r.t. execution time.

Finally, we evaluate the performance overhead due to encryption alone. Results are shown in Figure 14. In the
following, 𝑛 denotes the total number of instructions executed for the secured function; 𝑏 is the number of control-
flow instructions taken; 𝑖 = 𝑛 − 𝑏 is the number of other instructions; and 𝑘T denotes the cost of initialisation of
the Trivium modules, expressed in CPU cycles (as a reminder, in our simulation model, each executed instruction
takes one CPU cycle). In our evaluation, 𝑘T can be either 9 (polen_9) or 35 (polen_35). We measure the overhead
due to encryption as O =

𝐸E
𝐸𝜙

, where 𝐸E denotes the execution time with decryption activated, and 𝐸𝜙 denotes
the execution time without decryption activated. This overhead is due to the use of code encryption, but in
the following we illustrate that it is impacted by the control-flow structure of the secured program, and that

Digit. Threat. Res. Pract., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Code Polymorphism Meets Code Encryption: Confidentiality and Side-Channel Protection of Software Components • 1:23

Fig. 13. Execution time overhead for the generation of polymorphic instances, for polymorphic, polen_9 and polen_35,

expressed relative to the execution of the unprotected function in unprotected mode.

it impacts the use of code polymorphism as well. O can be also modelled as O =
𝑖+𝑘T×𝑏
𝑖+𝑏 = 1 + (𝑘T − 1) × 𝑟𝑏,

where 𝑟𝑏 denotes the ratio 𝑏
𝑛
or the number of control-flow instructions taken per instruction executed. That

is, with code decryption, each taken control-flow instruction incurs an execution time penalty of 𝑘T due to the
reinitialisation of the stream cipher. For polymorphic instances (Figure 14a), variations of the measured O follow
the variations of 𝑟𝑏, which supports the validity of our model. In our benchmarks, O reaches a maximum of 1.65
for aes-8-bits with 𝑘T = 35 due to the very high number of control-flow instructions taken, similarly to our
results in Figure 12. The measure of O for SGPCs (Figure 14b) shows a consistent overhead from one program to
another. This suggests that the control-flow structure of SGPCs is rather independent of the nature of the target
program to secure. This also implies that the major decision factor for SGPCs is the cost of the initialisation of
the Trivium modules. We further discuss this point in Section 5.1.

In general, we observe that the overhead is mainly influenced by: i) 𝑘T , the cost of initialisation of the Trivium
module; ii) the number of basic blocks in the secured code; iii) the average size of a basic block; and iv) the
presence of loops in the code (in particular, when these loops are highly iterative). Those observations show
that, for simple processors, the overhead is mainly influenced by the control flow graph and not the type of
instructions.

4.3.3 Hardware Overhead. The PolEn architecture was evaluated on a functional simulator for the RV32IM ISA,
designed as an extension to the Spike instruction set simulator. A drawback of this decision is that we were not
able to assess the exact hardware overhead in terms of logic gates. However, we have tried to provide estimates of
costs, based on results published in the literature. Previous work on an Intel Cyclone-V FPGA [24] reported that
a 32-bit Trivium represents 21% (237 Adaptative Logic Modules (ALMs), which are configurable logic blocks in
Intel FPGAs) of a 32-bit MIPS CPU, a processor with a 5-stage integer pipeline. For the same processor, a 128-bit
Trivium represents 67% (1,094 ALMs) of the CPU surface. Thus, if PolEn was implemented on the same processor,
the hardware overhead would be around 21% for an area-optimised version and 67% for a performance-optimised
version. That being said, we expect that a real application would occupy more area than the toy processor used in
the literature [24]. For example the VexRiscv [13] CPU, a 32-bit RISC-V core, which is capable of running Linux,
requires 1,764 ALMs on a Cyclone-V FPGA. The relative Trivium (and, thus, PolEn) overheads on this target
would be of the order of 13% for a 32-bit Trivium and 41% for a 128-bit Trivium.

Digit. Threat. Res. Pract., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:24 • Lionel Morel, Damien Couroussé, and Thomas Hiscock

(a) Overhead O measured on polymorphic instances. O
varies depending on the code of the secured function, in

particular, its control structure.

(b) Overhead O measured on SGPCs. Here, O is stable

across all cases as the control structure of the SGPC is

very regular from one case to another.

Fig. 14. Overhead due to code encryption, for polen_9 and polen_35. Bars show the overhead O (left Y-axis) as a percentage

of the cost of executing the non-encrypted version. The 𝑟𝑏 ratio is shown as a plain or dotted line (right-Y-axis).

5 DISCUSSION

5.1 Duplicating Trivium Instances

Conceptually, PolEn requires two Trivium instances: one for decrypting incoming instructions, and another
to encrypt polymorphic instances. Thus, the designer has to choose between having two distinct hardware
instances or a single one that is shared between the instruction fetch and the execution stages. For in-order scalar
processors, two instances do not seem to be interesting as not only are hardware costs significant relative to
the core, but we do not expect huge benefits in terms of performance. Moreover, a scalar processor would be
unable to execute instructions while waiting for encryption to complete. However, an out-of-order processor may
benefit from having a separate instance, as the core would be able to fully overlap encryption with the execution
of other instructions.
Furthermore, the evaluation of the overhead O in the preceding section shows that it is constant for SGPCs,

because their structure (in particular the control flow graph) is independent of the structure of the target
polymorphic program. This supports different design decisions for the two Trivium instances. For example, it
is possible to integrate a very efficient Trivium module for decryption, e.g., with a higher unrolling factor and
𝑘T ≪ 9, which would reduce O at the expense of a larger silicon footprint. This can also be compensated for by
the use of a less efficient encryption module (e.g., 𝑘T = 35), which is only used for encryption in the SGPCs: it
should be noted that in many cases, SGPCs can be executed far less often than polymorphic instances, meaning
that the extra cost of the latter can easily be compensated for.

5.2 Software or Hardware Trivium Instance

The previous section discussed whether or not a distinct hardware Trivium instance should be used for encryption.
However, another possibility is to implement the encryption module as a software library. This solution doesn’t
require an ISA extension, meaning that the PolEn portability is improved and that the overall hardware cost is
reduced. Of course, in this case, encryption execution time would be far longer compared to a hardware primitive.

Digit. Threat. Res. Pract., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Code Polymorphism Meets Code Encryption: Confidentiality and Side-Channel Protection of Software Components • 1:25

The main drawback is that encryption keys are managed in software, and may reside in memory. Therefore,
this countermeasure offers weaker protection. As an illustration, Dropbox client versions 1.1 to 1.2.8 performed
software encryption and opcode permutation in the Python bytecode. Nevertheless, Kholia andWęgrzyn managed
to bypass the encryption and recover the opcode mapping [25].

5.3 Code Encryption with a Block Cipher

The implementation of PolEn presented in Section 4 uses stream ciphers. In some contexts, it may be required to
use PolEn with a block cipher (e.g., the developers already have an hardened implementation). The mapping of
common cipher modes to the abstract cipher model defined in Section 3.3.1 is straightforward. For example, to
use a 128-bit AES in counter mode, the 𝐼𝑉 and 𝑠𝑡𝑎𝑡𝑒 would both be the counter value (a 128-bit value). Then,
PolEn would be instantiated with:

• I𝑘 (𝐼𝑉) = 𝐼𝑉

• T𝑒𝑛𝑐, 𝑘 (𝑠𝑡𝑎𝑡𝑒,𝑚) = (𝑠𝑡𝑎𝑡𝑒 + 1, 𝐴𝐸𝑆𝑘 (𝑠𝑡𝑎𝑡𝑒) ⊕𝑚)
• T𝑑𝑒𝑐, 𝑘 (𝑠𝑡𝑎𝑡𝑒,𝑚) = (𝑠𝑡𝑎𝑡𝑒 + 1, 𝐴𝐸𝑆𝑘 (𝑠𝑡𝑎𝑡𝑒) ⊕𝑚), is the same as T𝑒𝑛𝑐

Nevertheless, switching to a block cipher has several important implications for PolEn:
• A block cipher operates on blocks that are much larger than instructions (e.g., 128 bits) and additional
buffering hardware will be required to manage this. This limitation also implies the use of padding when
the size of basic blocks does not fit with 128-bit boundaries.

• The operations T𝑒𝑛𝑐, 𝑘 and T𝑑𝑒𝑐, 𝑘 are likely to have much higher latency and decrypting at the instruction
granularity of the CPU might not be possible. It could also be the case that latency is so high that it is not
possible to decrypt one or more instructions per clock cycle.

• The operation I𝑘 (𝐼𝑉) may be significantly faster than with a stream cipher, which means that basic
block merging heuristics presented in Section 3.3.2 will have to be changed. Ultimately, if I𝑘 (𝐼𝑉) incurs a
negligible overhead, basic block merging can be disabled, because control-flow instructions have no extra
penalty.

Those reasons highlight that stream-ciphers are a sound default choice for PolEn.

5.4 Encryption Scope

The ability to move in and out of the encryption domain is of particular interest when the protected call uses
shared or system libraries. However, protecting such functions raises many questions. First, ensuring that all of
the shared functions in the encrypted code can themselves be encrypted requires access to the source code in
order to compile an encrypted version of the binary. Second, aside from their use in protected code, functions in
shared libraries may be called by unprotected code. In this case, both encrypted and unencrypted versions of
these functions would be required; however, keeping both versions is a security breach in itself as it provides
plaintext/ciphertext combinations that an attacker can use to guess the encryption key. Finally, protecting too
many functions in the application codebase may severely impair its overall performance, as can be anticipated
from the results presented in Section 4.3. During deployment, the programmer can configure PolEn to the specific
usage setting.

6 RELATED WORKS

PolEn protects both code and code pointers through encryption. Although sensitive data is not encrypted
(only programs are encrypted), it is protected from a SCA by code polymorphism, which implements a form
of side-channel hiding protection. While this combination protects software against each attack vector, more
importantly, it also protects against more complex forms of attacks that benefit from each vector. Compared to
architectures with memory encryption, such as AEGIS [40] or Intel SGX [16], PolEn mitigates both side-channel

Digit. Threat. Res. Pract., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:26 • Lionel Morel, Damien Couroussé, and Thomas Hiscock

and code-extraction threats and responds to calls in recent studies that advocate for comparable combinations of
hardware and software countermeasures. In Polyglot [39], Instruction Set Randomisation is combined with code
encryption, and is shown to increase resistance to code reuse attacks, including Just-In-Time Return-Oriented
Programming. The binary of the protected application is diversified before deployment to a particular device. It is
then encrypted offline with one encryption key per memory page and decryption is triggered by the operating
system, on page loading, within the system’s MMU. We believe that PolEn and Polyglot have comparable security
properties concerning code reuse attacks, although PolEn has not been validated specifically against this type
of attack. In Polyglot, decryption is performed at the frontier between the CPU and the cache hierarchy. As
far as we know, no attack has been demonstrated that exploits a data leak from the MMU’s internal processor.
Therefore, Polyglot’s approach seems sufficient to address code confidentiality. Polyglot also seems to be easier
to integrate into existing processors than PolEn, which requires modifications to the CPU core. An interesting
line of work would be to adapt code polymorphism to memory-level encryption with Polyglot, rather than our
current, in-core decryption. In this case, extra care would be needed to ensure the confidentiality of the datapath
that is used to write PolEn’s dynamically generated instructions to memory.

More recently, Morpheus [22] combines encryption of code, code pointers, and data pointers with the creation
of two separate, randomly displaced, address spaces for code and data above the virtual address space. The
encryption countermeasure is inserted between the L1-L2 cache boundary, and cache tags are used to select
the associated encryption keys. Similarly to PolEn, Morpheus supports code encryption, but the demonstrated
overhead is much lower (around 1% penalty with re-randomisation periods of 50 ms). We believe that this is due to
the fact that, in Morpheus, the encryption latency is masked by the latency of L2 cache accesses, while in PolEnwe
do not assume any memory architecture and the decryption module is located in the processor micro-architecture,
which also protects against attackers capable of observing the contents of the L1 memory caches. Another major
difference is that the Morpheus architecture is supported by domain tagging: each execution domain is associated
with 2-bit tags, which are associated to each program instructions. The whole processor micro-architecture is
modified to propagate tags to the output values of each instruction and to operate with the pointer displacement
and domain encryption defences. In contrast, PolEn only requires the addition of a decryption and an encryption
modules to the fetch and decode stages of the processor pipeline, respectively. Last, Morpheus exploits the virtual
memory mechanism to introduce some form of code randomisation of the code and data memory layouts. In
PolEn, code polymorphism is implemented in software, which incurs a higher overhead, but supports a wider
range of randomisation capabilities, at the level of machine instructions.

It has also been observed that software obfuscation is vulnerable to timing SCA, mainly because the fine-grained
timing of programs is generally predictable [21]. Fell et al. remove the conditional control-flow instructions
vulnerable to timing attacks, and replace some of the original program instructions with so-called custom instruc-
tions. Custom instructions are supported by dedicated hardware which introduces at runtime non-deterministic
variability in the execution time. Fell et al.’s use of custom instructions is also one of the goals of code polymor-
phism: to introduce runtime variability to mitigate side-channel attacks. However, our implementation of code
polymorphism does not require dedicated hardware support. In PolEn, code polymorphism protects against
side-channel attacks, and code encryption protects against reverse engineering. Code encryption is stronger
than any form of code obfuscation as long as the attacker cannot access to the encryption key. Please note
that, in our work, code polymorphism is used as a countermeasure against side-channel attacks, and not as an
obfuscation countermeasure. The runtime variability provided by code polymorphism could be used as a form of
mitigation against reverse engineering, but this would require further work to properly assess the benefits of
code polymorphism as a form of code obfuscation.

Digit. Threat. Res. Pract., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Code Polymorphism Meets Code Encryption: Confidentiality and Side-Channel Protection of Software Components • 1:27

7 CONCLUSION

In this paper, we consider that an attack scenario involving side-channel analysis is the combination of two
successive phases: an analysis phase and an exploitation phase. We advocate that practical protections against
such attacks need to address these two phases. As a countermeasure against the analysis phase, our approach
considers the use of code encryption. As a countermeasure against the exploitation phase, our approach considers
the use of code polymorphism. This technique relies on runtime code generation, which makes its combination
with code encryption particularly challenging.

We have presented a combination of code encryption with code polymorphism, as implemented in the PolEn
toolchain. Code encryption protects against all forms of attacks that rely on reverse engineering the static, binary
version of the attacked program. Our framework can encrypt all code produced statically (including runtime code
generators) or dynamically (polymorphic instances) for target functions. Therefore, our approach significantly
strengthens programs against advanced attacks that rely on both reverse engineering and side-channel information
extraction.
We measured the performance of PolEn against a number of representative cryptographic implementations.

Security was evaluated using simulated side-channel traces for an AES software implementation protected with
PolEn. Our leakage analysis showed that our countermeasures made it more difficult to identify points of interest
in side-channel observations, and correlation analyses were noticeably more difficult with the addition of code
polymorphism. In particular, our security evaluation illustrates that encryption alone does not protect against
side-channel attacks, and emphasises the importance of combining it with other protections.
From the programmer’s point of view, PolEn is easy to use as it only requires the developer to define which

parts of the code (either statically or dynamically generated) should be encrypted, and what sources of variability
should be used to generate polymorphic variants. The configurability of our approach makes it possible to
fine-tune the application of both countermeasures, and weigh security/performance trade-offs, depending on the
application’s needs and context.

ACKNOWLEDGMENTS

This work was supported by the French program “Programme Investissements d’Avenir IRT Nanoelec” ANR-10-
AIRT-05, and the European project SERENE-IoT (16 004) within the framework of PENTA, the EUREKA cluster
for Application and Technology Research in Europe on NanoElectronics.

REFERENCES

[1] Giovanni Agosta, Alessandro Barenghi, and Gerardo Pelosi. 2012. A Code Morphing Methodology to Automate Power Analysis
Countermeasures. In DAC. https://doi.org/10.1145/2228360.2228376

[2] Giovanni Agosta, Alessandro Barenghi, and Gerardo Pelosi. 2019. Compiler-Based Techniques to Secure Cryptographic Embedded
Software against Side Channel Attacks. TCAD (2019). https://doi.org/10.1109/TCAD.2019.2912924

[3] Giovanni Agosta, Alessandro Barenghi, Gerardo Pelosi, and Michele Scandale. 2015. The MEET Approach: Securing Cryptographic
Embedded Software Against Side Channel Attacks. TCAD (2015). https://doi.org/10.1109/TCAD.2015.2430320

[4] Giovanni Agosta, Alessandro Barenghi, Gerardo Pelosi, and Michele Scandale. 2018. Reactive Side-Channel Countermeasures: Applicabil-
ity and Quantitative Security Evaluation. Microprocessors and Microsystems 62 (2018), 50–60. https://doi.org/10.1016/j.micpro.2018.07.001

[5] ANSSI. 2017. Common Criteria Certification. https://www.ssi.gouv.fr/en/certification/common-criteria-certification/.
[6] Boaz Barak. 2016. Hopes, Fears, and Software Obfuscation. Commun. ACM 59, 3 (2016), 88–96. https://doi.org/10.1145/2757276
[7] Alessandro Barenghi and Gerardo Pelosi. 2018. Side-Channel Security of Superscalar CPUs: Evaluating the Impact of Micro-Architectural

Features. In DAC. https://doi.org/10.1145/3195970.3196112
[8] Elena Gabriela Barrantes, David H. Ackley, Stephanie Forrest, Trek S. Palmer, Darko Stefanovic, and Dino Dai Zovi. 2003. Randomized

Instruction Set Emulation to Disrupt Binary Code Injection Attacks. In ACM CCS. 281–289. https://doi.org/10.1145/948109.948147
[9] Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark, Bryan Weeks, and Louis Wingers. 2013. The SIMON and SPECK

Families of Lightweight Block Ciphers. IACR Cryptol. ePrint Arch. (2013). https://doi.org/10.1145/2744769.2747946

Digit. Threat. Res. Pract., Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://doi.org/10.1145/2228360.2228376
https://doi.org/10.1109/TCAD.2019.2912924
https://doi.org/10.1109/TCAD.2015.2430320
https://doi.org/10.1016/j.micpro.2018.07.001
https://www.ssi.gouv.fr/en/certification/common-criteria-certification/
https://doi.org/10.1145/2757276
https://doi.org/10.1145/3195970.3196112
https://doi.org/10.1145/948109.948147
https://doi.org/10.1145/2744769.2747946

1:28 • Lionel Morel, Damien Couroussé, and Thomas Hiscock

[10] Nicolas Belleville, Damien Couroussé, Karine Heydemann, and Henri-Pierre Charles. 2018. Automated Software Protection for the
Masses Against Side-Channel Attacks. ACM TACO 15, 4 (Nov. 2018), 47:1–47:27. https://doi.org/10.1145/3281662

[11] Shivam Bhasin, Jean-Luc Danger, Sylvain Guilley, and Zakaria Najm. 2013. NICV: Normalized Inter-Class Variance for Detection of
Side-Channel Leakage. IACR Cryptol. ePrint Arch. (2013). https://eprint.iacr.org/2013/717.

[12] Olivier Bronchain and François-Xavier Standaert. 2020. Side-Channel Countermeasures’ Dissection and the Limits of Closed Source
Security Evaluations. TCHES (2020). https://doi.org/10.13154/tches.v2020.i2.1-25

[13] Papon Charles. 2016. Spike RISC-V ISA Simulator. https://github.com/SpinalHDL/VexRiscv
[14] Xiaoyang Cheng, Yan Lin, Debin Gao, and Chunfu Jia. 2019. DynOpVm: VM-Based Software Obfuscation with Dynamic Opcode

Mapping. In ACNS (Lecture Notes in Computer Science). Cham, 155–174. https://doi.org/10.1007/978-3-030-21568-2_8
[15] Christian Collberg and Jasvir Nagra. 2009. Surreptitious Software: Obfuscation, Watermarking, and Tamperproofing for Software Protection

(1st ed.). Addison-Wesley Professional. https://doi.org/10.5555/1594894
[16] Victor Costan and Srinivas Devadas. 2016. Intel SGX Explained. IACR Cryptol. ePrint Arch. 2016, 86 (2016), 1–118.
[17] Damien Couroussé, Thierno Barry, Bruno Robisson, Philippe Jaillon, Olivier Potin, and Jean-Louis Lanet. 2016. Runtime Code

Polymorphism as a Protection Against Side Channel Attacks. In WISTP. https://doi.org/10.1007/978-3-319-45931-8
[18] M. Cova, V. Felmetsger, G. Banks, and G. Vigna. 2006. Static Detection of Vulnerabilities in X86 Executables. In ACSAC. https:

//doi.org/10.1109/ACSAC.2006.50
[19] Ang Cui and Rick Housley. 2017. BADFET: Defeating Modern Secure Boot Using Second-Order Pulsed Electromagnetic Fault Injection.

In USENIX WOOT.
[20] estream [n. d.]. eSTREAM: The ECRYPT Stream Cipher Project. Retrieved from http://www.ecrypt.eu.org/stream.
[21] Alexander Fell, Hung Thinh Pham, and Siew-Kei Lam. 2019. TAD: Time Side-channel Attack Defense of Obfuscated Source Code

(ASPDAC ’19). New York, NY, USA, 58–63. https://doi.org/10.1145/3287624.3287694
[22] Mark Gallagher, Lauren Biernacki, Shibo Chen, Zelalem Birhanu Aweke, Salessawi Ferede Yitbarek, Misiker Tadesse Aga, Austin Harris,

Zhixing Xu, Baris Kasikci, Valeria Bertacco, Sharad Malik, Mohit Tiwari, and Todd Austin. 2019. Morpheus: A Vulnerability-Tolerant
Secure Architecture Based on Ensembles of Moving Target Defenses with Churn. In ASPLOS. 469–484. https://doi.org/10.1145/3297858.
3304037

[23] Michael Henson and Stephen Taylor. 2014. Memory Encryption: A Survey of Existing Techniques. Comput. Surveys 46, 4 (March 2014),
53:1–53:26. https://doi.org/10.1145/2566673

[24] Thomas Hiscock, Olivier Savry, and Louis Goubin. 2019. Lightweight Instruction-Level Encryption for Embedded Processors Using
Stream Ciphers. Microprocessors and Microsystems 64 (Feb. 2019), 43–52. https://doi.org/10.1016/j.micpro.2018.10.001

[25] Dhiru Kholia and Przemysław Węgrzyn. 2013. Looking Inside the (Drop) Box. In USENIX WOOT.
[26] Paul Kocher, Joshua Jaffe, Benjamin Jun, and Pankaj Rohatgi. 2011. Introduction to Differential Power Analysis. JCEN (2011).

http://dx.doi.org/10.1007/s13389-011-0006-y.
[27] Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Framework for Lifelong Program Analysis & Transformation. In Proceedings

of CGO’04. Palo Alto, California. https://doi.org/10.1109/CGO.2004.1281665
[28] Victor Lomné and Thomas Roche. 2021. A Side Journey to Titan Side-Channel Attack on the Google Titan Security Key. White Paper.

NinjaLab. https://ninjalab.io/a-side-journey-to-titan/.
[29] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. 2007. Power Analysis Attacks: Revealing the Secrets of Smart Cards. Springer.
[30] Mitsuru Matsui. 1997. New Block Encryption Algorithm MISTY. In International Workshop on Fast Software Encryption. Springer, 54–68.

https://doi.org/10.1007/BFb0052334
[31] mbetls [n. d.]. mbedTLS library. Retrieved from https://tls.mbed.org/.
[32] David Oswald, Daehyun Strobel, Falk Schellenberg, Timo Kasper, and Christof Paar. 2013. When Reverse-EngineeringMeets Side-Channel

Analysis – Digital Lockpicking in Practice. In SAC. https://doi.org/10.1007/978-3-662-43414-7_29
[33] Vasilis Pappas, Michalis Polychronakis, and Angelos D. Keromytis. 2012. Smashing the Gadgets: Hindering Return-Oriented Programming

Using In-Place Code Randomization. In IEEE S&P. 601–615. https://doi.org/10.1109/SP.2012.41
[34] Marcin Rogawski. 2007. Hardware Evaluation of eSTREAM Candidates. (2007). https://doi.org/10.1.1.129.2610
[35] Hovav Shacham. 2007. The Geometry of Innocent Flesh on the Bone: Return-into-libc without Function Calls (on the x86). In ACM CCS.

552–61. https://doi.org/10.1145/1315245.1315313
[36] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino, A. Dutcher, J. Grosen, S. Feng, C. Hauser, C. Kruegel, and G. Vigna. 2016.

SOK: (State of) The Art of War: Offensive Techniques in Binary Analysis. In SP. https://doi.org/10.1109/SP.2016.17
[37] SiFive. 2017. Spike RISC-V ISA Simulator. https://github.com/riscv/riscv-isa-sim
[38] Kanad Sinha. 2019. Repurposing Software Defenses with Specialized Hardware. Ph. D. Dissertation. Columbia University. https:

//doi.org/10.7916/d8-e6tc-kr63
[39] K. Sinha, V. P. Kemerlis, and S. Sethumadhavan. 2017. Reviving instruction set randomization. In IEEE HOST. 21–28. https://doi.org/10.

1109/HST.2017.7951732

Digit. Threat. Res. Pract., Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://doi.org/10.1145/3281662
https://eprint.iacr.org/2013/717
https://doi.org/10.13154/tches.v2020.i2.1-25
https://github.com/SpinalHDL/VexRiscv
https://doi.org/10.1007/978-3-030-21568-2_8
https://doi.org/10.5555/1594894
https://doi.org/10.1007/978-3-319-45931-8
https://doi.org/10.1109/ACSAC.2006.50
https://doi.org/10.1109/ACSAC.2006.50
https://doi.org/10.1145/3287624.3287694
https://doi.org/10.1145/3297858.3304037
https://doi.org/10.1145/3297858.3304037
https://doi.org/10.1145/2566673
https://doi.org/10.1016/j.micpro.2018.10.001
http://dx.doi.org/10.1007/s13389-011-0006-y
https://doi.org/10.1109/CGO.2004.1281665
https://ninjalab.io/a-side-journey-to-titan/
https://doi.org/10.1007/BFb0052334
https://doi.org/10.1007/978-3-662-43414-7_29
https://doi.org/10.1109/SP.2012.41
https://doi.org/10.1.1.129.2610
https://doi.org/10.1145/1315245.1315313
https://doi.org/10.1109/SP.2016.17
https://github.com/riscv/riscv-isa-sim
https://doi.org/10.7916/d8-e6tc-kr63
https://doi.org/10.7916/d8-e6tc-kr63
https://doi.org/10.1109/HST.2017.7951732
https://doi.org/10.1109/HST.2017.7951732

Code Polymorphism Meets Code Encryption: Confidentiality and Side-Channel Protection of Software Components • 1:29

[40] G. Edward Suh, Charles W. O’Donnell, and Srinivas Devadas. 2005. AEGIS: A Single-Chip Secure Processor. Information Security
Technical Report 10, 2 (Jan. 2005), 63–73. https://doi.org/10.1016/j.istr.2005.05.002

[41] Jeroen Van Cleemput, Bjorn De Sutter, and Koen De Bosschere. 2017. Adaptive Compiler Strategies for Mitigating Timing Side Channel
Attacks. IEEE TDSC (2017). https://doi.org/10.1109/TDSC.2017.2729549

[42] Andrew Waterman and Krste Asanovic (Eds.). 2019. The RISC-V Instruction Set Manual – Volume I: Unprivileged ISA. Document
Version 20191213 (2019), 238. https://riscv.org/technical/specifications/.

[43] Mario Werner, Thomas Unterluggauer, David Schaffenrath, and Stefan Mangard. 2018. Sponge-Based Control-Flow Protection for IoT
Devices. In IEEE EuroS&P. https://doi.org/10.1109/EuroSP.2018.00023

Digit. Threat. Res. Pract., Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://doi.org/10.1016/j.istr.2005.05.002
https://doi.org/10.1109/TDSC.2017.2729549
https://riscv.org/technical/specifications/
https://doi.org/10.1109/EuroSP.2018.00023

	Abstract
	1 Introduction
	2 Background
	2.1 Platform and Security Model
	2.2 The Analysis Phase and Protections Against Reverse Engineering
	2.3 On the Importance of the Analysis Phase in a Side-Channel Attack
	2.4 The Exploitation Phase and Protections Against Side-Channel Attacks

	3 PolEn
	3.1 General Approach
	3.2 Code Polymorphism
	3.3 Code Encryption
	3.4 Encrypted Polymorphic Code
	3.5 PolEn Configurability

	4 Proof of Concept and Experimental Evaluation
	4.1 Implementation and Experimental Setup
	4.2 Security Analysis
	4.3 Performance Analysis

	5 Discussion
	5.1 Duplicating Trivium Instances
	5.2 Software or Hardware Trivium Instance
	5.3 Code Encryption with a Block Cipher
	5.4 Encryption Scope

	6 Related Works
	7 Conclusion
	Acknowledgments
	References

