SCI-FI: Control Signal, Code, and Control Flow
Integrity against Fault Injection Attacks

Thomas Chamelot
Univ. Grenoble Alpes, CEA, List,
F-38000 Grenoble, France
thomas.chamelot @cea.fr

Abstract—Fault injection attacks have become a serious threat
against embedded systems. Recently, Laurent et al. have reported
that some faults inside the microarchitecture escape all typical
software fault models and so software counter-measures. Moreover,
state-of-the-art counter-measures, hardware-only or with hard-
ware support, do not consider the integrity of microarchitectural
control signals that are the target of these faults.

We present SCI-FI, a counter-measure for Control Signal,
Code, and Control-Flow Integrity against Fault Injection attacks.
SCI-FI combines the protection of pipeline control signals with
a fine-grained code and control-flow integrity mechanism, and
can additionally provide code authentication. We evaluate SCI-
FI by extending a RISC-V core. The average hardware area
overheads range from 6.5% to 23.8%, and the average code size
and execution time increase by 25.4% and 17.5% respectively.

Index Terms—fault injection attacks, code integrity, control-flow
integrity, execution integrity, control logic, counter-measures

I. INTRODUCTION

Context. Fault injection attacks are known to be an im-
portant threat to the security of embedded systems. The fault
injection targets the hardware, using various means such as
power or clock glitches, electromagnetic disturbances, or laser
illumination. It may result into various effects at the logical
level, and nowadays powerful attacker models consider the
possibility to alter selectively one or few bit values [1]. The
attacker aims at inducing computation errors or modifying
values in the circuit under attack in order to leverage fault
injection for many attack objectives such as extract confidential
data, leverage software vulnerabilities, or escalate privileges.

State-of-the-art protections against fault injection attacks
enforce three security properties: data integrity, code integrity,
and control-flow integrity. Code integrity ensures that program
instructions are not modified before execution. Control-flow
integrity ensures that control-flow transfers, such as branches
and calls, are correct with respect to a reference control-flow
graph. A full control-flow integrity also ensures the correct
order of the executed instructions. Data integrity is related
to both data stored in external memory such as Flash or
RAM and data manipulated by the processor. On the one
hand, the correctness of the program output depends on the
paths taken during the execution of a program. On the other

This work was partially funded by the French National Research Agency
(ANR) under grant agreement ANR-18-CE39-0003.

Damien Couroussé
Univ. Grenoble Alpes, CEA, List,
F-38000 Grenoble, France
damien.courousse @cea.fr

Karine Heydemann
Sorbonne Université, CNRS, LIP6,
F-75005 Paris, France
karine.heydemann @lip6.fr

hand, the computations involved in the evaluation of control-
flow conditions depend on the data values being processed [2].
Hence, data, code, and control-flow integrity are all required
to ensure the correct processing of a computation.

Several works study code and control-flow integrity hardware
mechanisms based on the computation of an integrity signature.
In [3], a hardware monitor, associated to the processor, com-
putes a code integrity signature and uses additional metadata
to validate the code and control-flow integrity in separate
verification mechanisms. In [4], a single signature mechanism
enforces both code and control-flow integrity. Finally, recent
counter-measures for code and control-flow integrity are based
on the authenticated decryption of program instructions [5]—
[7]. They ensure code authenticity and code confidentiality in
addition to code and control-flow integrity.

Problem. Recently, Laurent et al. reported that some faults
inside the microarchitecture escape all typical software fault
models [8]], e.g., when the processing of an instruction is altered
after the decoding of the binary instruction. Therefore, state-
of-the-art counter-measures fail to catch such fault injection
attacks, and ensuring both code integrity and control-flow
integrity is not sufficient to protect the program execution. We
call execution integrity the integrity of the control logic in
the hardware, and we argue that this new security property is
required to protect against powerful fault injection attacks.

In the context of safety, Kim and Somani compute an
execution integrity signature from a selection of control
signals [9]]. However, this work targets soft errors, and assumes
that the first program execution is correct, which is not a valid
assumption in the context of fault injection attacks.

Goal & Challenges. Our goal is to design a counter-measure
against fault injection attacks supporting simultaneously ex-
ecution integrity, code integrity, and control-flow integrity.
Execution integrity is achieved by enforcing the integrity of
the processor’s control signals, hence protecting the whole
instruction path of the processor microarchitecture against fault
injection attacks. The first challenge is to implement an efficient
signature-based mechanism that ensures execution integrity. We
are looking for a signature mechanism that does not impact the
processor’s critical path, and that minimizes the silicon area
overheads. The second challenge is to combine the execution
integrity signature with code and control-flow integrity.

Proposal. We propose SCI-FI, a counter-measure against

fault injection attacks. The approach is based on a function
signature used to compute a runtime signature from control
signals emitted by the decode pipeline stage, similarly to [4],
which in SCI-FI provides control-flow integrity, code integrity
and potentially code authentication, and execution integrity for
the frontend stages of the processor pipeline. The control signals
in the following stages are protected by a redundancy scheme,
which completes the coverage of the processor pipeline in our
execution integrity approach. The runtime signatures, computed
in the hardware, are checked against reference signatures. These
reference signatures are computed at compile-time by a signal-
accurate model of the target processor, and are inserted into
the program by a dedicated compiler toolchain.
Contributions & Outline. The contributions of this paper
are: the description of SCI-FI, a counter-measure ensuring
code, control-flow and execution integrity in the context of
fault injection attacks, supported by a processor extension and a
compiler toolchain (Section ; the description of two different
implementations on the RISC-V CV32E40P processor and the
evaluation of hardware and software overheads (Section [[II)).

II. SCI-FI CONCEPTS
A. Threat Model

We consider an attacker that only has physical access to
the device under attack. The attacker is supposed to use fault
injection on the device. They can inject two kinds of faults in
the memory or in the processor logic: either a fault with full
control over a few bits (typically less than 8 bits), or a fault
altering many bits but without any control on the faulted value.
They can inject multiple faults at different time locations. We
consider fault injections targeting the instruction path only;
faults targeting the data path are assumed to be covered by a
complementary dedicated mechanism, typically, error detection
code in internal data registers. The attacker does not have
logical access to the device, and therefore cannot perform
common software attacks, nor cannot modify the memory
contents through logical access, e.g., by reprogramming it.
Moreover, side-channel analysis and invasive attacks such as
micro-probing are out of scope.

B. Background

A program can be decomposed in maximal instruction
sequences with a single entry instruction and a single exit
instruction, commonly called basic blocks. A standard tech-
nique to ensure code integrity is to compute a signature for
each basic block from the binary encoding of its instructions.
The signature .S; associated to a basic block B; composed of
instructions Iy, ..., I, is computed using a signature function
f and an initialization vector IV; ()

Sig = f(IVi7IO)7 Sip, = f(sinfwln%

At runtime, the signatures are computed and checked
against reference signatures during each control-flow transfer.
Reference signatures are precomputed offline, they are either
stored in a dedicated memory or embedded in the instruction
memory, e.g., at the end of basic blocks.

Si=si, (D

™~ CCFI [CSI

. 1 1 I

Pipeline State ! !
Fetch —| Decode [+ Execute —Memory — Write
Back

Fig. 1. Tllustration of a 5-stage processor extended with SCI-FI (grey modules)

Generalized path signature analysis (GPSA) enforces control-
flow integrity by computing signatures that depend on the
control-flow graph [10]. Typically, the signature of the basic
block B;_; is used as the initialization vector IV; of the
successor basic block B;. If several execution paths merge
into a basic block, patch values are applied to the signature of
each predecessor basic blocks B;, By, .. .: an update function
u generates a unique initialization vector IV, for every tuple
of signatures S}, Sy, ... and patch values P}, Py, ... (@):

IV = u(S;, Pj) = u(Sk, P) = ... 2)

GPSA requires that reference signatures are accessible to the
signature verification mechanism. Similarly to code integrity
presented above, such signatures are intertwined with program
instructions, or stored in a separate data section. Additionally,
GPSA requires to instrument the program with patch values.

C. SCI-FI Overview

SCI-FI combines GPSA with a redundancy-based mechanism
to ensure code, control-flow and execution integrity in the
microarchitecture. An example of the extension of a 5-stage
pipeline with the two SCI-FI modules is shown in Fig. [T} The
Code and Control-Flow Integrity module (CCFI) implements
the hardware support for GPSA and enforces execution integrity
up to the decode stage. The Control Signal Integrity module
(CSI) completes the coverage of execution integrity through
a redundancy-based mechanism. On the software side, SCI-
FI requires modifications of the compiler backend to insert
signature checks and patch values.

Instead of using binary encodings of program instructions to
compute a signature, CCFI uses signals coming from the decode
pipeline stage, called the pipeline state. CSI checks that signals
from the pipeline state are correctly propagated up to their
consumption in the subsequent pipeline stages. The selected
signals are duplicated into CSI at the output of the decode
stage. Then, for each subsequent pipeline stage, CSI checks the
original control signals against their duplicates. Therefore, the
CSI module can detect any fault on control signals included in
the pipeline state after the decode stage up to the pipeline end.
Execution integrity of the whole instruction path is ensured by
the combination of the CCFI and CSI modules: CCFI ensures
the integrity of the pipeline state, and CSI then ensures the
integrity of control signals up to their consumption stage.

D. Pipeline State

The construction of a pipeline state requires identifying
the control signals that directly map to the binary instruction

in order to provide code integrity. Also, GPSA requires that
the signature is computed by static analysis, which constrains
the selection of signals monitored by the signature. Control
signals that only depend on the instruction currently in the
decode stage are integrated in the pipeline state, e.g., operands
selection signals, ALU control signals and immediates. Some
control signals are also part of the pipeline state as they only
depend on statically known operand dependencies, e.g., signals
controlling forwarding mechanisms.

E. CCFI — Code and Control-Flow Integrity Module

The CCFI module implements GPSA. It requires two
functions, for the signature computation and for the application
of patch values, with specific properties summarized in this
section. Cf. Werner et al. [4] for a detailed discussion. Note
that most cryptographic functions intrinsically support all these
properties.

1) The signature function f: is the core of the CCFI module,
and the GPSA fault detection capabilities depend on f’s
properties. i) Collision resistance: prevents an attacker from
forging a faulted basic block presenting the same signature
as the signature of the original basic block, or to introduce a
second fault reverting a signature change. ii) Error preservation:
signature changes due to an error are not cancelled by any
following error-free sequences. This property, in combination
with collision resistance, allows for the arbitrary placement
of signature checks. iii) Non associativity: sequences of in-
structions with different orderings produce different signatures.
This property ensures control-flow integrity at the level of
machine instructions. iv) Invertibility: also introduced by [4],
is not required by our approach because patch values are
applied on the basic block signature instead of being applied
on intermediate signatures (see below).

2) The update function u: has the following requirements.
1) Full control: given a signature, there exists a patch value
for any target IV. ii) Error preservation: any fault previously
introduced in the signature cannot be reverted by applying
an error-free update. iii) Invertibility: a patch value can be
computed from an initialization vector and a signature.

The update mechanism is triggered at each control-flow
transfer. The runtime signature is updated using function u
and the current patch value. The patch value is stored in a
patch register in CCFI, and can be updated by a dedicated
instruction that loads a patch value from memory. Additionally,
the patch register is reset to a default, constant patch value
after each control-flow transfer. This default patch value must
be known at compile time to compute the reference signatures,
and the identity element of w, if it exists, can be used as the
default patch value.

When several basic blocks B;, By, ... have the same suc-
cessor B, there is at most a single basic block By falling
into By (i.e., the basic block immediately preceding B, in
the memory layout). If By exists, its signature Sy is used
as the initialization vector IV, of By: IV, = S;. Otherwise,
1V, is chosen randomly among the signatures of B;, By,

Knowing IV, and u~*, a patch value is computed for all the
other predecessors of B;.

Currently, SCI-FI does not fully support indirect branches;
backward edges, also known as function returns, are the only
indirect branches currently handled. The idea is to assume a
constant signature at the exit points of a callee for any call site.
To complete the control-flow integrity in presence of returns,
a shadow stack is required.

3) Signature verification: A runtime signature is computed
for every instruction in the program. Thanks to the properties
of the functions f and wu, any fault captured in the signature
will be forwarded into the next ones (cf. [I-ET)). Therefore, it
is possible to insert verifications anywhere in the program.

SCI-FI uses custom control-flow transfer instructions, there-
after called verification instructions, which have the same
semantics as their original counterpart. Verification instructions
load a reference signature immediately following in the program
memory, and trigger the signature verification. Then, they
proceed similarly to other control-flow instructions: if the
branch is taken, the runtime signature is updated with the
current patch value, and the current patch value is reset to
its default value. When the verification fails, it triggers an
exception that calls a software user-designed fault handler.

FE. CSI — Control Signal Integrity Module

The CSI module enforces execution integrity for the pipeline
stages following the decode stage. The principle is to use a
redundancy scheme to detect any change in the control signals
constituting the pipeline state, from their emission to their
consumption stage. This approach is lightweight because it
involves only a small part of the pipeline’s control logic. The
CSI module duplicates the propagation of selected signals
between the different pipeline stages. In each pipeline stage,
the duplicated signals are checked against the original ones.
The duplication can use any redundancy scheme, potentially
with several duplicates, e.g., a simple copy, a complementary
copy or the initial value xored with an arbitrary value.

III. IMPLEMENTATION AND EXPERIMENTAL EVALUATION

A. Implementation

We integrate SCI-FI to the CV32E40P processor [L1]], a 32-
bit, in-order RISC-V core with a 4-stage pipeline implementing
the RV32I base instruction set version 2.1. We select the
CV32E40P because such small in-order core is representative
of typical fault injection targets, and because a 4-stage pipeline
is representative of the main challenges of microarchitectural
design due to control and data hazards such as forwarding
mechanisms. More complex processors are left for future work.

The pipeline state is constructed manually from the signals
described in Section The control signals outputted by the
decode stage and that will go through subsequent stages are
duplicated in the CSI module. We use a simple duplication
scheme to implement the CSI redundancy.

SCI-FI is implemented with two different single cycle
signature functions for the CCFI module: i) a CRC32 designed
to detect up to 8 bit-flips per basic block; ii) a CBC-MAC based

1 Size Os I Cycles Os
|3 Size O2 W Cycles 02

0.4
- 0.3
©
[
<
202
e}
0.1
0.0 -
> NN N < S © 2 O
& &Y E & S & & ° &Y
& & o RAIPRN R S &
5 V\\\i{\ & & & @ &
S N &

Fig. 2. Execution time and code size overheads for the Embench-IoT
benchmarks, with the -Os and —-02 compiler optimization levels.

on a fully unrolled hardware implementation of the Prince block
cipher, which is selected for its small silicon area. Thanks to
the CBC-MAC signature function, SCI-FI additionally provides
code authenticity. We select the exclusive or (XOR) for the
update function in the two implementations.

The CV32E40P is modified as follows. All the control-
flow instructions update the runtime signature with the current
patch value if the branch is taken (Section [[IZE2). The core is
also extended with custom instructions to trigger the signature
verifications, or to load the patch values. We implement a
verification instruction (Section for each control-flow
instruction in the RV32I instruction set, and a load patch
instruction that fetches a patch value from memory using a
new Control Status Register (CSR) as the address base and
an immediate value as the offset. The CSR is set during the
core bootstrap to point to the .patches section of the binary
program that gathers all the patches.

The RISC-V backend of the LLVM-12 toolchain is modified
to emit the dedicated instructions required by SCI-FI. The
reference signatures and the patch values are generated from
the final binary program by a static analysis tool and a signal-
accurate model of CV32E40P’s decode stage.

B. Experimental evaluation

To evaluate the hardware overhead due to SCI-FI, we
synthesize the modified CV32E40P into an Application Spe-
cific Integrated Circuit (ASIC). The ASIC is designed for a
frequency of 400MHz, in the GF-22FDX FDSOI technology,
and the target frequency is not impacted by the addition of
SCI-FI. The core occupies 55 kGE with CRC32 and 64 kGE
with CBC-MAC/Prince, which represents an area overhead wrt.
the unmodified core of 6.5% and 23.8% respectively.

The software evaluation is carried out through HDL cycle-
accurate simulations of the modified CV32E40P with CRC32.
We benchmark our implementation with the Embench-IoT [12]
test suite, which targets embedded systems without operating
system. 4 tests (picojpeg, qrduino, sglib-combined, and wik-
isort) are not evaluated because SCI-FI does not support indirect
branches yet. All the test programs are compiled with the SCI-
FI toolchain, with optimization levels -0s and -02, linked
with the Newlib C-library and the LLVM soft float library,

and signature verifications are inserted in the benchmarked
functions only.

Fig. 2] reports the execution time (measured in CPU cycles)
and the code size overheads. Note that the code size evaluation
considers only the sections impacted by SCI-FI (.text and
.patches), which provides a pessimistic, upper bound of the
overall code size overheads for a complete firmware image.
Execution time overheads range between 2.5% and 44.0%
(geometric average 17.5%), and the code size overheads range
between 13.8% and 45.1% (geometric average 25.4%). When
compared to existing counter-measures [3[|-[7], SCI-FI has
comparable overheads but offers in addition execution integrity.

IV. CONCLUSION

This paper presents SCI-FI, a counter-measure against fault
injection attacks. SCI-FI articulates two protection mechanisms
to provide full coverage of the control logic of the processor. A
first module, implementing generalized path signature analysis
(GPSA), builds a signature from control signals to provide
simultaneously code integrity, code authenticity, control-flow
integrity and execution integrity from the fetch stage to the
end of the decode stage. A second module, implementing a
redundancy-based mechanism, enforces the integrity of the
same control signals in the subsequent pipeline stages. SCI-FI
provides comparable overheads to related works, and extends
the state of the art of counter-measures against fault injection
attacks by combining execution integrity with code integrity,
code authenticity and control-flow integrity.

ACKNOWLEDGEMENTS

We thank Mikael Le Coadou and Juan Suzano Da Fonseca
for their contributions to the hardware evaluation.

REFERENCES

[1] B. Yuce, P. Schaumont, and M. Witteman, “Fault Attacks on Secure
Embedded Software: Threats, Design, and Evaluation,” Journal of
Hardware and Systems Security, 2018.

[2] J. Proy, K. Heydemann, A. Berzati, and A. Cohen, “Compiler-Assisted
Loop Hardening Against Fault Attacks,” ACM Transactions on Architec-
ture and Code Optimization, 2017.

[3] J.-L. Danger et al., “Processor Anchor to Increase the Robustness Against
Fault Injection and Cyber Attacks,” in COSADE, 2020.

[4] M. Werner, E. Wenger, and S. Mangard, “Protecting the Control Flow
of Embedded Processors against Fault Attacks,” in CARDIS, 2015.

[5] R. de Clercq et al., “SOFIA: Software and control flow integrity
architecture,” in DATE, 2016.

[6] M. Werner, T. Unterluggauer, D. Schaffenrath, and S. Mangard, “Sponge-
Based Control-Flow Protection for IoT Devices,” in EuroS&P, 2018.

[71 O. Savry, M. El-Majihi, and T. Hiscock, “Confidaent: Control FLow
protection with Instruction and Data Authenticated Encryption,” in DSD,
2020.

[8] J. Laurent, V. Beroulle, C. Deleuze, F. Pebay-Peyroula, and A. Papadim-
itriou, “Cross-layer analysis of software fault models and countermeasures
against hardware fault attacks in a RISC-V processor,” Microprocessors
and Microsystems, 2019.

[9] S. Kim and A. K. Somani, “On-line integrity monitoring of micropro-

cessor control logic,” Microelectronics Journal, 2001.

K. Wilken and J. P. Shen, “Continuous signature monitoring: Low-cost

concurrent detection of processor control errors,” IEEE TCAD, 1990.

OpenHW Group, “CV32E40P,” |https://github.com/openhwgroup/

cv32e40p, 2021.

“Embench™: Open Benchmarks for Embedded Platforms,” https://github

com/embench/embench-iot, 2021.

[10]
[11]

[12]

https://github.com/openhwgroup/cv32e40p
https://github.com/openhwgroup/cv32e40p
https://github.com/embench/embench-iot
https://github.com/embench/embench-iot

	Introduction
	SCI-FI Concepts
	Threat Model
	Background
	SCI-FI Overview
	Pipeline State
	CCFI – Code and Control-Flow Integrity Module
	The signature function f
	The update function u
	Signature verification

	CSI – Control Signal Integrity Module

	Implementation and Experimental Evaluation
	Implementation
	Experimental evaluation

	Conclusion
	References

