
•

■ INSTITUT
CARNOT

CEA LETI
- MINATEC

® digiteo
Research in nîence and IHhnolagy of information ■

■ INSTITUT
CARNOT

CEA LIST

SCI-FI: Control Signal, Code, and Control-Flow Integrity
against Fault Injection Attacks

Thomas Chamelot1, Damien Couroussé1, Karine Heydemann2

1Université Grenoble Alpes, CEA, List F-38000 Grenoble, France, firstname.lastname@cea.fr
2Sorbonne Université, CNRS, LIP6 F-75005, Paris, France, firstname.lastname@lip6.fr

Fault Injection Attacks
An attacker performs a fault injection attack by using power or clock
glitch, EM pulse or laser beam to perturb an integrated circuit.

Required Security Properties

Fetch Decode Execute Memory Write
Back

I-MEM D-MEM

Code integrity Control-flow integrity Data integrity

Problem

It has been shown that some vulnerabilities exist at the microarchitecural
level [1].

Context

Protecting the Pipeline Control Path

New security property: Execution integrity
• SCI-FI combines code and control-flow integrity properties with exe-

cution integrity
• SCI-FI achieves execution integrity by protecting the pipeline’s control

signals

Contributions

Fetch Decode Execute MemoryMemory Write
Back

I-MEM
CCFI CSI

.elfLLVM.c Reference signature
and patches generator

Pipeline State

Code transformation example
with memcpy from libgcc.

include <stddef .h>

__attribute__ ((scifi_secured))
void *
memcpy (void* dest ,

const void* src ,
size_t len)

{
char *d = dest;
const char *s = src;
while (len --)

*d++ = *s++;
return dest;

}

memcpy :
scifi .ldp 0(patch_base)
scifi .beqz a2 , . LBB0_3
scifi . signature
mv a3 , a0

. LBB0_2 :
scifi .ldp 4(patch_base)
lb a4 , 0(a1)
addi a2 , a2 , -1
addi a1 , a1 , 1
addi a5 , a3 , 1
sb a4 , 0(a3)
mv a3 , a5
scifi .bnez a2 , . LBB0_2
scifi . signature

. LBB0_3
scifi .ret
scifi . signature

Architecture

1. Data-independent control signals outputted by Decode are gathered
into a so-called pipeline state Σ

2. The CCFI module enforces code and control-flow integrity and execu-
tion integrity for Decode and Execute stages
(a) Computes signature from current pipeline state and previous sig-

nature
Si = f(Σi, Si−1)

(b) Updates signature to generate collision for instructions with mul-
tiple predecessors after a taken branch

S
′

= u(S, patch)

(c) Verifies runtime signatures against reference signatures located
after dedicated control-flow instructions

3. The CSI module enforces execution integrity
(a) Duplicate signals from the pipeline state
(b) Checks duplicated signals between pipeline stages

4. A dedicated tool generates reference signatures and patches at compile
time

SCI-FI dedicated instructions

• Verification instructions load a reference signature immediately fol-
lowing in the program memory, and trigger the signature verifica-
tion: scifi.beq, scifi.bne, scifi.blt, scifi.bltu, scifi.bge,
scifi.bgeu, scifi.jal, scifi.jalr

• Load patch instructions fetch a patch value into the CCFI module:
scifi.ldp

Principles
RISC-V RV32I CV32E40P

ASIC implementation 28-FDSOI @ 400MHz

• CRC32: +6.5% • CBC-MAC Prince: +23.8%

Software evaluation using LLVM 12 with Newlib on Embench-IOT

• Code size: +29.4% • Execution time: +18.4%

Experimental Evaluation

Security Properties

Code, control-flow and execution integrity and additionally code authen-
ticity with CBC-MAC as the signature function

Overheads
Similar to existing state-of-the-art counter-measures for code and control-
flow integrity

Future Work
Support for more complex architectures and more complex software
(OOP, OS, . . .)
You can learn more about SCI-FI in [2]!

Conclusion

[1] Laurent, J. et al. Fault Injection on Hidden Registers in a RISC-V Rocket Processor and Software Countermeasures. Design, Automation & Test in Europe Conference & Exhibition (2019).
[2] Chamelot T. et al. SCI-FI: Control Signal, Code, and Control Flow Integrity against Fault Injection Attacks. Design, Automation & Test in Europe Conference & Exhibition (2022).

Bibliography

