
MAFIA: Protecting the
Microarchitecture of Embedded
Systems Against Fault Injection
Attacks
Thomas Chamelot, Damien Couroussé, Karine Heydemann

Published to IEEE TCAD 2023

TASER 2023

10/09/2023MAFIA: Protecting the Microarchitecture of Embedded Systems Against Fault Injection Attacks TASER 2023 2

Fault injection attacks everywhere

Sensitive data
/

Access control

Software

CPU
Crypto IP
ASIC

10/09/2023MAFIA: Protecting the Microarchitecture of Embedded Systems Against Fault Injection Attacks TASER 2023 3

Fault injection attacks everywhere

Sensitive data
/

Access control

Software

Control unit

CPU

PC

Memory
CODE

DATA

BUS

10/09/2023MAFIA: Protecting the Microarchitecture of Embedded Systems Against Fault Injection Attacks TASER 2023 4

State of the Art: Security Properties

Fetch Decode Execute

I-MEM

Memory
Write

back

D-MEM

• Data integrity – not considered in this work

• Code authenticity / integrity

• Control-flow integrity

• Direct branches / calls

• Indirect branches / calls

• Branchless instructions sequences
(a.k.a. basic blocks)

• Execution of all the
instructions
(e.g. no skip)

• In correct order

A simple loop code:

10/09/2023MAFIA: Protecting the Microarchitecture of Embedded Systems Against Fault Injection Attacks TASER 2023 5

Problem: faults targeting control signals

Fetch Decode Execute

I-MEM

Memory
Write

back

D-MEM

loop:
addi t0, t0, #-1
bne t0, zero, loop

• Control-Flow Integrity
• Code authenticity / Integrity

A simple loop code:

10/09/2023MAFIA: Protecting the Microarchitecture of Embedded Systems Against Fault Injection Attacks TASER 2023 6

Problem: faults targeting control signals

Fetch Decode Execute

I-MEM

Memory
Write

back

D-MEM

loop:
addi t0, t0, #-1
bne t0, zero, loop

Fault on instruction decodebeq

• Control-Flow Integrity
• Code authenticity / Integrity

A simple loop code:

10/09/2023 7

Problem: faults targeting control signals

Fetch Decode Execute

I-MEM

Memory
Write

back

D-MEM

loop:
addi t0[n], t0[n-1], #-1
bne t0[n], zero, loop

Fault on forwarding

• Control-Flow Integrity
• Code authenticity / Integrity

Register bank

t0[n-1]

Forwarding

J. Laurent, V. Beroulle, C. Deleuze, F. Pebay-
Peyroula, and A. Papadimitriou, “Cross-layer
analysis of software fault models and
countermeasures against hardware fault attacks
in a RISC-V processor,” Microprocessors and
Microsystems, 2019.

S. Tollec, M. Asavoae, D. Couroussé, K.
Heydemann, and M. Jan, “Exploration of Fault
Effects on Formal RISC-V Microarchitecture
Models,” in FDTC, 2022.

• … and many other

10/09/2023MAFIA: Protecting the Microarchitecture of Embedded Systems Against Fault Injection Attacks TASER 2023 8

Problem: faults targeting control signals

Fetch Decode Execute

I-MEM

Memory
Write

back

D-MEM

10/09/2023MAFIA: Protecting the Microarchitecture of Embedded Systems Against Fault Injection Attacks TASER 2023 9

Objective:
full protection of the processor instruction path

Fetch Decode Execute

I-MEM

Memory
Write

back

D-MEM

• Data integrity – not considered
in this work

• Code integrity

• Control-flow integrity

• Direct branches / calls

• Indirect branches / calls

• Branchless instructions
sequences (a.k.a. basic
blocks)

• Control-signals integrity

• Full coverage of in-order processor instruction path
• Control-Signal Integrity
• Code Authenticity / Code Integrity
• Control-Flow Integrity

• Full support of embedded software stacks:
• Indirect function calls, interrupts

• Implementation based on
RISC-V CV32E40P

• Software toolchain
support

10/09/2023MAFIA: Protecting the Microarchitecture of Embedded Systems Against Fault Injection Attacks TASER 2023 10

MAFIA: protection of the microarchitecture against fault
injection attacks

• Control-Flow Integrity
• Code authenticity / Integrity
• Control-Signal Integrity

Fetch Decode Execute

I-MEM

Memory
Write

back

CACFI CSI

Pipeline state

Reference

signatures

Reference

control signals

• CACFI: Code Authenticity and
Control-Flow Integrity module

• Signature-based

• Pipeline State

• CSI: Control-Signal Integrity module

10/09/2023MAFIA: Protecting the Microarchitecture of Embedded Systems Against Fault Injection Attacks TASER 2023 11

Pipeline State

• Control-Flow Integrity
• Code authenticity / Integrity
• Control-Signal Integrity

Fetch Decode Execute

I-MEM

Memory
Write

back

CACFI CSI

Pipeline state 𝜮𝒊

Reference

signatures

Selection of control signals emitted by the decode stage

• Requirement: deterministic value at compilation time (program invariant)

• Static signals – depending only on the decoded instruction:
• Operands, operation selection
• Immediate values

• Dynamic signals – depending on other instructions in flight
• Forwarding

Reference

control signals

• Pipeline state Σ𝑖 (instruction 𝐼𝑖)

• Signature function f: 𝑆𝑖 = 𝑓 Σ𝑖 , 𝐼𝑉

• Based on generalized path signature analysis
[Wilken et Shen, 1990]

• Security properties
• Collision resistance
• Error preservation
• Non-associativity

• Hardware constraints
• Computation in

1 CPU cycle
• Low area

• Supports code authenticity
or code integrity

10/09/2023MAFIA: Protecting the Microarchitecture of Embedded Systems Against Fault Injection Attacks TASER 2023 12

Signature function (CACFI)

Fetch Decode Execute

I-MEM

Memory
Write

back

CACFI

(f)
CSI

Reference

signatures

Pipeline state 𝛴𝑖

K. Wilken and J. P. Shen, “Continuous signature monitoring:
Low-cost concurrent detection of processor control errors,”
IEEE TCAD, 1990.

Reference

control signals

• Each instruction is associated to a unique
signature value, computed from the current
pipeline state value

• We want to protect some dynamic signals,
e.g. forwarding control signals

• Dynamic signals may take different values
according to the execution path

10/09/2023MAFIA: Protecting the Microarchitecture of Embedded Systems Against Fault Injection Attacks TASER 2023 13

Pipeline state uniqueness

add t0, t0, #1
add t1, a0, t0
load t1, 0(t1)

BB0:

mov t0, #0

BB1:

add t0, t0, #1
…
bne t0, #16, BB2

BB2:

forwarding forwarding

no forwarding

• Each instruction is associated to a unique
signature value, computed from the current
pipeline state value

• We want to protect some dynamic signals,
e.g. forwarding control signals

• Dynamic signals may take different values
according to the execution path

Solution

• The compiler:
• verifies the pipeline state uniqueness;
• inserts instructions for breaking

dependencies when needed.

10/09/2023MAFIA: Protecting the Microarchitecture of Embedded Systems Against Fault Injection Attacks TASER 2023 14

Pipeline state uniqueness

add t0, t0, #1
add t1, a0, t0
load t1, 0(t1)

BB0:

mov t0, #0
nop

BB1:

add t0, t0, #1
…
bne t0, #16, BB2

BB2:

forwarding no forwarding

no forwarding

• 1 signature associated to each instruction

• Error preservation
• Verifications can be used anywhere

• Verification triggered by
dedicated (control-flow) instructions
• Load reference signature
• Verify signature
• Proceed with control-flow

10/09/2023MAFIA: Protecting the Microarchitecture of Embedded Systems Against Fault Injection Attacks TASER 2023 15

Signature verification (CACFI)

Fetch Decode Execute

I-MEM

Memory
Write

back

CACFI CSI

Pipeline state

Reference

signatures

Reference

control signals

IV 𝑆0 𝑆1f f

Σ0 Σ1

Detection

?

𝑆𝑟𝑒𝑓

• Input: duplication of pipeline state signals, from the CACFI module

• Signals are verified at each stage (until consumption)

• Supports any redundancy scheme. E.g.:
• Simple copy
• Complementary copy
• XOR (signal, constant)

10/09/2023MAFIA: Protecting the Microarchitecture of Embedded Systems Against Fault Injection Attacks TASER 2023 16

Control-Signal Integrity (CSI module)

• Control-Flow Integrity
• Code authenticity / Integrity
• Control-Signal Integrity

Fetch Decode Execute

I-MEM

Memory
Write

back

CACFI CSI

Pipeline state

Reference

signatures

Reference

control signals

Detection

• Processor: RISC-V 32-bits CV32E40P
• ISA: RV32I(MC)
• 4-stage, in-order pipeline

• Two implementations with different signature functions f:
• CRC32 – code integrity, detects up to 8 bit-flips
• CBC-MAC Prince – code authenticity

• ASIC synthesis 22nm FDSOI @ 400MHz

• Formal verification of the pipeline state coverage

10/09/2023MAFIA: Protecting the Microarchitecture of Embedded Systems Against Fault Injection Attacks TASER 2023 17

Hardware implementation

• Dedicated instructions
• Loading of signature patches
• Signature verifications

• Pipeline state uniqueness: preventing control
signals variability due to e.g. forwarding

• Removal of indirect branches

• Dispatchers for indirect calls

• Generation of patches and reference
signatures

10/09/2023MAFIA: Protecting the Microarchitecture of Embedded Systems Against Fault Injection Attacks TASER 2023 18

Software support

Methodology

• ASIC synthesis. 22nm FDSOI @ 400MHz

• RTL simulation of Embench IoT
• All the code is instrumented (signature

continuity)
• Verifications in each basic block of the

benchmarked functions

Hardware evaluation
• Surface CV32E40P : 50kGE
• Surface CRC32 : 55kGE +6,5% (+5kGE)
• Surface Prince : 64kGE +23,8% (+13kGE)

Software evaluation CRC32
• Code size overhead: +29,4%
• Execution time overhead: +18,4%

10/09/2023MAFIA: Protecting the Microarchitecture of Embedded Systems Against Fault Injection Attacks TASER 2023 19

Experimental evaluation

Execution time Code size

Merci
T. Chamelot, D. Couroussé, and K. Heydemann “MAFIA: Protecting the
Microarchitecture of Embedded Systems Against Fault Injection
Attacks,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems (TCAD), vol. accepted for publication, 2023.
https://doi.org/10.1109/TCAD.2023.3276507

damien.courousse@cea.fr

Open positions!

CHES poster!

https://doi.org/10.1109/TCAD.2023.3276507
mailto:Damien.courousse@cea.fr

