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State of the Art: Security Properties
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• Data integrity – not considered in this work

• Code authenticity / integrity

• Control-flow integrity

• Direct branches / calls

• Indirect branches / calls

• Branchless instructions sequences
(a.k.a. basic blocks)

• Execution of all the 
instructions 
(e.g. no skip)

• In correct order



A simple loop code:
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Problem: faults targeting control signals

Fetch Decode Execute

I-MEM

Memory
Write

back

D-MEM

loop:
addi t0, t0, #-1
bne t0, zero, loop

• Control-Flow Integrity
• Code authenticity / Integrity



A simple loop code:
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Problem: faults targeting control signals

Fetch Decode Execute

I-MEM

Memory
Write

back

D-MEM

loop:
addi t0, t0, #-1
bne t0, zero, loop

Fault on instruction decodebeq

• Control-Flow Integrity
• Code authenticity / Integrity



A simple loop code:
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Problem: faults targeting control signals

Fetch Decode Execute

I-MEM

Memory
Write

back

D-MEM

loop:
addi t0[n], t0[n-1], #-1
bne t0[n], zero, loop

Fault on forwarding

• Control-Flow Integrity
• Code authenticity / Integrity

Register bank

t0[n-1]

Forwarding
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• … and many other

10/09/2023MAFIA: Protecting the Microarchitecture of Embedded Systems Against Fault Injection Attacks            TASER 2023 8

Problem: faults targeting control signals
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Objective: 
full protection of the processor instruction path
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D-MEM

• Data integrity – not considered
in this work

• Code integrity

• Control-flow integrity

• Direct branches / calls

• Indirect branches / calls

• Branchless instructions 
sequences (a.k.a. basic 
blocks)

• Control-signals integrity



• Full coverage of in-order processor instruction path
• Control-Signal Integrity
• Code Authenticity / Code Integrity
• Control-Flow Integrity

• Full support of embedded software stacks:
• Indirect function calls, interrupts

• Implementation based on
RISC-V CV32E40P

• Software toolchain 
support
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MAFIA: protection of the microarchitecture against fault
injection attacks

• Control-Flow Integrity
• Code authenticity / Integrity
• Control-Signal Integrity
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Pipeline state
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Reference 

control signals

• CACFI: Code Authenticity and 
Control-Flow Integrity module

• Signature-based

•  Pipeline State

• CSI: Control-Signal Integrity module
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Pipeline State

• Control-Flow Integrity
• Code authenticity / Integrity
• Control-Signal Integrity

Fetch Decode Execute

I-MEM

Memory
Write

back

CACFI CSI

Pipeline state 𝜮𝒊

Reference 

signatures

Selection of control signals emitted by the decode stage

• Requirement: deterministic value at compilation time (program invariant)

• Static signals – depending only on the decoded instruction:
• Operands, operation selection
• Immediate values

• Dynamic signals – depending on other instructions in flight
• Forwarding

Reference 

control signals



• Pipeline state Σ𝑖 (instruction 𝐼𝑖)

• Signature function f: 𝑆𝑖 = 𝑓 Σ𝑖 , 𝐼𝑉

• Based on generalized path signature analysis
[Wilken et Shen, 1990]

• Security properties
• Collision resistance
• Error preservation
• Non-associativity

• Hardware constraints
• Computation in 

1 CPU cycle
• Low area

• Supports code authenticity
or code integrity
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Signature function (CACFI)
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Pipeline state 𝛴𝑖

K. Wilken and J. P. Shen, “Continuous signature monitoring: 
Low-cost concurrent detection of processor control errors,” 
IEEE TCAD, 1990.

Reference 

control signals



• Each instruction is associated to a unique
signature value, computed from the current 
pipeline state value 

• We want to protect some dynamic signals, 
e.g. forwarding control signals

• Dynamic signals may take different values 
according to the execution path
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Pipeline state uniqueness

add t0, t0, #1
add t1, a0, t0
load t1, 0(t1)

BB0:

mov t0, #0

BB1:

add t0, t0, #1
…
bne t0, #16, BB2

BB2:

forwarding forwarding

no forwarding



• Each instruction is associated to a unique
signature value, computed from the current 
pipeline state value 

• We want to protect some dynamic signals, 
e.g. forwarding control signals

• Dynamic signals may take different values 
according to the execution path

Solution

• The compiler:
• verifies the pipeline state uniqueness;
• inserts instructions for breaking 

dependencies when needed.
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Pipeline state uniqueness

add t0, t0, #1
add t1, a0, t0
load t1, 0(t1)

BB0:

mov t0, #0
nop

BB1:

add t0, t0, #1
…
bne t0, #16, BB2

BB2:

forwarding no forwarding

no forwarding



• 1 signature associated to each instruction

• Error preservation
•  Verifications can be used anywhere

• Verification triggered by 
dedicated (control-flow) instructions
• Load reference signature
• Verify signature
• Proceed with control-flow
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Signature verification (CACFI)
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• Input: duplication of pipeline state signals, from the CACFI module

• Signals are verified at each stage (until consumption)

• Supports any redundancy scheme.  E.g.:
• Simple copy
• Complementary copy
• XOR (signal, constant)
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Control-Signal Integrity (CSI module)

• Control-Flow Integrity
• Code authenticity / Integrity
• Control-Signal Integrity
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• Processor: RISC-V 32-bits CV32E40P
• ISA: RV32I(MC)
• 4-stage, in-order pipeline

• Two implementations with different signature functions f:
• CRC32 – code integrity, detects up to 8 bit-flips
• CBC-MAC Prince – code authenticity

• ASIC synthesis 22nm FDSOI @ 400MHz

• Formal verification of the pipeline state coverage
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Hardware implementation



• Dedicated instructions
• Loading of signature patches
• Signature verifications

• Pipeline state uniqueness: preventing control 
signals variability due to e.g. forwarding

• Removal of indirect branches

• Dispatchers for indirect calls

• Generation of patches and reference
signatures
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Software support



Methodology

• ASIC synthesis. 22nm FDSOI @ 400MHz

• RTL simulation of Embench IoT
• All the code is instrumented (signature 

continuity)
• Verifications in each basic block of the 

benchmarked functions

Hardware evaluation
• Surface CV32E40P : 50kGE
• Surface CRC32 : 55kGE +6,5% (+5kGE)
• Surface Prince : 64kGE +23,8% (+13kGE)

Software evaluation CRC32
• Code size overhead: +29,4%
• Execution time overhead: +18,4%
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Experimental evaluation

Execution time Code size
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