list
|

Fault Security Analysis and Verification:
Challenges and New Directions
Damien Couroussé — CEA List, Univ. Grenoble Alpes, France

Karine Heydemann — Thales DIS, France & LIP6, Sorbonne Univ., France
Mathieu Jan — CEA List, Univ. Grenoble Alpes, France

' B INSTITUT R
CARNOT HE&A université
| ‘ CEA LIST Grenoble Alpes PARIS-SACLAY

Fault injection attacks (FI/ FIA)

Fault injection attacks, conceptually

|
! !
y=f(X) Y =frautea(X)

L, anaiysis J_l

/ 7/
(/7 N iy
QT

Highly effective against cryptographic implementations ﬂ
Can leverage software vulnerabilities [Cui & Rousley, 2017] f 2

@ [Cui & Rousley, 2017] Defeating Modern Secure Boot Using Second-Order Pulsed Electromagnetic Fault Injection. 10.5555/3154768.3154771

https://dl.acm.org/doi/10.5555/3154768.3154771

Processors security wrt. fault injection

Fl can target many elements in complex SoCs

e.g. memory hierarchy [Trouchkine, 2021]

The attack setup around Fl can be elaborated
e.g. bypassing a secure boot, on complex SoCs
[Vasselle, 2020] [Fanjas, 2023]

Fault effects are diverse and hard to understand
black-box characterization [Trouchkine, 2021]

characterization methodology [Proy, 2019]

Finding a needle in a haystack?
« Fault exploitation is expensive

 Characterization of fault effects is
challenging

 limited observability

« effects depends on FI setup
« BUT lots of needles available

« Large attack surface

« Faults can induce many
unexpected, exploitable effects

[Trouchkine, 2021] Electromagnetic fault injection against a complex CPU, toward new micro-architectural fault models 10.1007/s13389-021-00259-6
[Fanjas, 2023] Exploration of system-on-chip secure-boot vulnerability to fault-injection by side-channel analysis 10.1007/978-3-031-25319-5 2
[Vasselle, 2020] Laser-Induced Fault Injection on Smartphone Bypassing the Secure Boot-Extended Version 10.1109/TC.2018.2860010

4

[Proy, 2019] A First ISA-Level Characterization of EM Pulse Effects on Superscalar Microarchitectures: A Secure Software Perspective 10.1145/3339252.3339253

https://link.springer.com/article/10.1007/s13389-021-00259-6
doi:10.1007/978-3-031-25319-5_2
https://doi.org/10.1109/TC.2018.2860010
https://doi.org/10.1145/3339252.3339253

Fault injection attacks, behind the scenes

Application, 05, Firmware
1 intwverify(S,P){ g Faulty\
intr: 6- Fault
B S,P
; »F Control Flow -
2 if(S=P) Exploitation
3 r=1; and/or T
else Data Flow
4 r=0 2 5- Fault
5 returnr r —
/ / 9 9 Observation
Software Faulty :
4- Fault Propagation
Layer \ Instructions pag
— Instruction Set Architecture (ISA) Layer
1
Hardware
Toop Decode Execute

w
-Architecture ,'5_, ; 5
Il:leuel @\ | Instruction | & Status Regs §
=] memory | @ Register File
Boot ROM | Data Mem
A
\ Faulty Bits 3- Fault Manifestation
Logic Gates Memory Cells Flip Flops
Circuit
.)
Elect rl|cal 2- Fault Injection
Transients
- Timing Power EM Heating Light
Physical
Level | —'“'— g Q ’ [YUCG, 2018]

@ [Yuce, 2018] Fault Attacks on Secure Embedded Software: Threats, Design and Evaluation. 10.1007/s41635-018-0038-1

https://doi.org/10.1007/s41635-018-0038-1

Fault injection attacks, behind the scenes

Different abstraction layers involved P o——
« Circuit level: initial fault effect 1 intverify(s,P) Ssp oty \ 6- Fault
) 2 if{S_’= !’.‘r ' :23;::' i Exploitation
- Software level: consequences of the lower-level fault effects : EI;;;- S fopuarow | 1
r=0;
. . . . ° }returnr f 9 f gthlaeLrl'\l.rtatiun
Turning attention to processor microarchitecture Software Ay T |
. . . . 4- Fault Propagation
- Fl on processor pipelines can bypass SW protections [Yuce, 2016] Laver netructions
. . _ . Instruction Set Architecture (ISA) Layer
- Importance of hidden microarchitectural registers [Laurent, 2021] Hardware T R——
. . ‘e Layer
- Microarchitectural fault effects are leveraged by specific SW
. . -Archi 5 . -
conditions: init. state, run program [Tollec, 2022] vt 7€ |\ [Tnstruction | & 2
=|| Memory Register File
Boot ROM | Data Mem

~
\ Faulty Bits 3- Fault Manifestation

Fault effects depend on the current system state

- Faults can have no effect : :
Logic Gates Memory Cells Flip Flops
- Faults can manifest after unknown amount of time Circut {j @
- Software system state = execution context Eg%i
f_:::srl_is:ItS 2- Fault Injection
Physical Timing Power EM Heating L!g[]t
Joint HW-SW analysis is mandatory! Level T 4 3 § g | [Yuce 2018]

[Laurent, 2021] Bridging the Gap between RTL and Software Fault Injection. 10.1145/3446214
[Yuce, 2016] Software Fault Resistance is Futile: Effective Single-Glitch Attacks. 10.1109/FDTC.2016.21
[Tollec, 2022] Exploration of fault effects on formal RISC-V microarchitecture models. 10.1109/FDTC57191.2022.00017

https://doi.org/10.1145/3446214
https://doi.org/10.1109/FDTC.2016.21
https://doi.org/10.1109/FDTC57191.2022.00017

Security analysis

Security evaluation

« In situ: real system, real fault injection bench
- E.g. certification

« Representative / accurate
- of attacker capabilities
« of system robustness

« Non-exhaustive

(out of the scope of this talk)

Security verification

« Model-based:

- HW,
- SW,
- attacker

- Non-representative / accurate
- of target system
- of real fault effects

- Exhaustive

Security verification

Status

« Faults modeling incurs extra analysis complexity
- State space explosion
« Nb possible states
« New transitions between reachable states
« Multiple faults: combinatorial explosion

- Microarchitectural HW models + SW
« Increase of models size

= Simulation

- Efficient evaluation of model behaviour using
concrete input state

- Can evaluate large models

- Exhausitivity is impractical:
iterate V input states, V fault instances

Challenges

- Growing complexity of real case studies
- Large HW designs, large programs (SW)

- Exhausive verification wrt. model size explosion

= Formal methods
- Designed to address exhaustivity

- Cannot address large models
- Especially challenging wrt. FIA

Outline

1. Formal Modeling for
Microarchitectural Fault
Injections

2. Protecting the
Microarchitecture

3. Benchmarking

A A AN A AN A A AN A AN
L L L L L L L L L

Formal Modeling for

Microarchitectural Fault
B Injections

S. Tollec, M. Asavoae, D. Couroussé, K. Heydemann, and M. Jan “pArchiFl:

Formal Modeling and Verification Strategies for Microarchitectural Fault Injections,”
in FMCAD, 2023.

https://zenodo.org/records/7958412
https://github.com/CEA-LIST/uArchiFI *

* Currently empty, will be populated soon! 10

https://zenodo.org/records/7958412
https://github.com/CEA-LIST/uArchiFI

Modeling: faulty HW transition systems

Hardware modeling

Transition system M = (S5, 5. X, T) where

® A system state s € S corresponds to a valuation of
circuit registers, i.e., s 1= (ri,..., n).

® An input x € X is a vector x := (i1,.... Im)-
® Sy C S is the set of initial states,

e 7T:S5x X — S isthe transition function of the
circuit.

Need for a tool that automatically:

- Parses hardware description languages —Hardware

- Builds a hardware transition system

11

Modeling: faulty HW transition systems

Software program mapping

The program is encoded in the initial state of a
memory modeled simultaneously with the processor,
ie., So.

Requirements

- Initialize the initial state of the transition system

- Simulate the system up to the desired state

—Hardware
—Software

12

Modeling: faulty HW transition systems

Fault injection model

Fault model F C L x T x € where

® [is the set of possible locations of the fault,

® T is the timing range of the fault injection,

® & is the set of possible effects of the fault.
E.g., bit-flip, byte-reset, symbolic value

Need for a tool that automatically:

® Modifies the transition system according to the
fault model

—Hardware —Fault Injection
—Software

13

Modeling: faulty HW transition systems

Attacker model

Attacker model A = (F. p. N) where
e F is the fault model,

® o is the attacker goal defined as a reachability
property on the transition system,

® N is the maximum number of fault injections.

Need for a verification procedure that
automatically:

® Finds whether the attacker goal is reachable

® Provides a counterexample to understand the
propagation of the fault and its final consequences

—Hardware —Fault Injection

—Software

—Vulnerability

14

WArchiFl implementation: system modeling

pArchiFl workflow pArchiFl infrastructure (based on Yosys)

———————————————————————————— ® Frontend: Hardware description languages,

HW //— Intermediate TI'a‘ﬂSitiDIl .
Representation System e-g . Verl |{}g

|
|

Design CPU !

= RN
: ATLIL) Amt? btor?

I
|
|
|
:
|
Binary 1010 _*J'_*J : .
N Yosys - ® Takes an attacker model as input
|
|
|
|
|
|
I
|
|
|
|

® Yosys Intermediate Representation (RTLIL):
Graph with gates and connections

ELF

_ | - ===
Fault ;
Model

Program (0101
® Formal backend: Aiger, SMV, Btor2, SMTLib

Attacker

Model < Attacker

(oal

Transition system generation

Number of : .
njections - Modelmg . . .
et i e e - ® Bind the HW design and the binary program

(.
® Simulate the system up to the desired state

o [FDTC, 2022] _ ® Include the attacker model
« Highlights subtle fault effects in microarchitecture

« Analyses consequences in software

@ [FDTC, 2022] Exploration of fault effects on formal RISC-V microarchitecture models. 10.1109/FDTC57191.2022.00017

https://doi.org/10.1109/FDTC57191.2022.00017

UWArchiFl in practice: three use cases

Use case names

| |- Robust Software

Il - Robust Hardware

Il - Cryptographic Software

CV32E40P Secure Ibex Ihex
, = r T (Riscy) = =3 C - RISC-V = r C _RISC-V
e QL gF Risev JI\I|F -2stages JL _JF -2stages
Hardware design LI T - dualcore TTTT
gates: 2842 4422 1983 .. .
FFs: 179 211 114 € lelted HW Slze
size*(GE): 89954 61452 26327
Software program | VerifyPIN_V7 [Dur+16] VerifyPIN_V1 [Dur+16] Key Schedule (AES) [kok19] €—— Limited SW size
_ Bypass authentication Bypass authentication Set to 0 a byte in the
Attacker Goal ¢ without triggering SW alert without triggering HW alert penultimate round key
location: Sequential logic Sequential logic Combinational logic
Fault model 7 Control Path Redundant CPU Core Execute stage of CPU
effect: Symbolic Symbolic Reset
timing: 60:* * *
Number of Fls N | 1 5 2 o
BMC depth & | — ” - Bounded verification

Verification results

‘ p is reachable

 is unreachable

* when synthesized with the open-source Nangate45 standard cell library

(~100 cycles)

v is unreachable
(¢ reachable with N=4)

16

Fault-Resistant Partitioning of Secure CPUsS [kt

- Thursday, September 5
- Fault Resistance |

R _ Circuit Model (" kfaultresistant
Hardware sy » Hardware | _)! partitioning ! = Verification
DESiED — | Modeling | I Build partitions | Ve logs
——m - i &) i ficat
I&m{"iltl | Pr(Eve A I Verification result
— —. ode [confinement or | c
4 | ! | Failure
Fault } | Fault ' i : detection !
» . —>» | —— |
Model !Modelmg} i | L ! [partitioning 7], Eloiable Exoloitabl
_ . xploitable Exploitable
Attack | I\ S I Prp\f[e output I E‘aults Pafrtitions
Order | k)i lnaeg)rl y — > m
= e
— . | - exploitable P’ |
Agﬂd‘ier} — Step 1 — HW Verification « | l-exploitable F' /
oa L e | -
¢ System Model Verification result
> System | . System] b ulnerabl
> | ystem | L\ I ystem |’—-> Robust Vulnerable
Binary | » Modeling | | Verification
Program L — . - T Counter ved
Step 2 — System Verification example

Figure 3: Co-verification methodology to evaluate SW/HW systems against faults attacks.

17

Protecting the
B Microarchitecture

T. Chamelot, D. Couroussé, and K. Heydemann “MAFIA: Protecting the
Microarchitecture of Embedded Systems Against Fault Injection Attacks,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems
(TCAD), 2023.

18

Problem: Faults targeting control signals

Data integrity
Code authenticity / integrity
Control-flow integrity

QQQ

many possible fault effects! [Laurent, 2021]
[FDTC, 2022]

I-MEM

\/

Fetch Decod Execu Memo

U

[Laurent, 2021] Bridging the Gap between RTL and Software Fault Injection. 10.1145/3446214
[FDTC, 2022] Exploration of fault effects on formal RISC-V microarchitecture models. 10.1109/FDTC57191.2022.00017

https://doi.org/10.1145/3446214
https://doi.org/10.1109/FDTC57191.2022.00017

Problem: Faults targeting control signals

Data integrity

Code authenticity / integrity
Control-flow integrity

Control-signal integrity [TCAD, 2023]

QQAQ

I-MEM

\

Fetch

y

—\U

(, Control-signal Integrity

Decode

\J

Execute

U

Memor

\

@ [TCAD, 2023] MAFIA: Protecting the Microarchitecture of Embedded Systems Against Fault Injection Attacks. 10.1109/TCAD.2023.3276507

Wri
back

20

https://doi.org/10.1109/TCAD.2023.3276507

MAFIA: Protection of the microarchitecture

against fault injection attacks

O Data integrity (not supported)
Code authenticity / integrity
Control-flow integrity
Control-signal integrity

QQOQ

I-MEM

Fetch

A

Reference
control signals

Reference

: CACFI
signatures

A

Pipeline state —

Decode Execute

@ [TCAD, 2023] MAFIA: Protecting the Microarchitecture of Embedded Systems Against Fault Injection Attacks. 10.1109/TCAD.2023.3276507

CSl

Memory

Write
back

21

https://doi.org/10.1109/TCAD.2023.3276507

Code Authenticity and Control-Flow Integrity (CACFI)

Code authenticity / integrity < signature function f
Control-flow integrity < signature chaining
Control-signal integrity < signature computed from pipeline state values

‘Q Detection

QQQ

BBO:

Insn0

So = f(Z0,1Vy)

Insn1

S1 = f(Z1,50)

Insn2

S, = f(Z2,81)

InsnN

Sgpo = f(EN,Sn-1)

BB1:

Insn0

So = f(Z0,SBR0)

InsnM

Sgp1 = f(Em Sm-1)

Reference
pipeline state

Reference

I-MEM . » CACFI
signatures |
Pipeline state—
Fetch Decode Execute

A

@ [TCAD, 2023] MAFIA: Protecting the Microarchitecture of Embedded Systems Against Fault Injection Attacks. 10.1109/TCAD.2023.3276507

CSl

Memory

Write
back

22

https://doi.org/10.1109/TCAD.2023.3276507

Control-Signal Integrity (CSl)

O Control-signal integrity * Integrity ensured by redundancy
e.g. duplication

- Signals are verified at each stage (until consumption) ‘Q Detection

|

Reference
control signals

I-MEM — CACFI I

CS
__ @
L7

O Code authenticity / integrity

() Control-flow integrity Fetch Decode Execute Memory
@ Control-signal integrity

Write
back

A

@ [TCAD, 2023] MAFIA: Protecting the Microarchitecture of Embedded Systems Against Fault Injection Attacks. 10.1109/TCAD.2023.3276507

https://doi.org/10.1109/TCAD.2023.3276507

MAFIA: Software support

integrity of

indirect control flow

CFl support

[\

Sources
.C

Dispatcher

generator

generation of
reference signatures

\

Microarch.
Model
(decode)

h 4

Signatures Program
generator elf

24

MAFIA: Protecting the Microarchitecture of Embedded Systems Against Fault Injection Attacks
Experimental evaluation

Exec. time overhead

Methodology

Hardware evaluation

ASIC synthesis. 22nm FDSOI @ 400MHz - Surface CV32E40P :
- Surface CRC32:

RTL simulation of Embench loT
- All the code is instrumented (signature continuity)

. Verifications in each basic block of the benchmarked Software evaluation CRC32

- Surface Prince :

« Code size overhead:

50kGE
55kGE
64kGE

+29,4%

« Execution time overhead: +18,4%

NNAS

+6,5% (+5kGE)
+23,8% (+13kGE)

MAFIA.|Idp mEE Other
Patches [10s
B Signatures 02

Code size

functions
[10s MAFIA.Idp - . .
=2 02 mmm Other ecutiontime| |
— ; ®
5 < 0.4
[4}]
i S
- o 037
1 N
1]
0.2
3
O 0.1
f 0.0
X o8
PR\
\6’ ‘\’b’
o)

25

(o]
N

B Benchmarking

Benchmarking:

supporting development of security and reproducible research

Objectives

- Validate / evaluate analysis tools: security analysis results, analysis computation time

« Replicate documented attacks & countermeasures

Needs

Provide representative implementations,
of variable complexity

Analysis
- Target implementation: complete, detailed
(E.g. netlist + binary program)

- Attacker model: faults, attack objectives...
« Complexity metrics

Development of countermeasures
« Source code

- Targeted security: properties, coverage of each
protection

Pitfalls

Consider cryptography,
but not only

Analysis

Various abstraction levels possible:
« SW: source code, compiler IR, binary code
« HW: RTL, netlist (back-annotated?)

The implementation model must match the
fault/attacker model

Sensitivity to the input state

Development of countermeasures

Impact of compiler + synthesis flow 7

Benchmarking processor security

Open-sourcing secure implementations and analysis tools is not enough!

Objectives

- Validate / evaluate analysis tools: security analysis results, analysis computation time

« Replicate documented attacks & countermeasures

Development of representative benchmarks? - HW + SW countermeasures

« Target implementation
« binary code,

FISSC: the Fault Injection and

« RTL / netlist, Simulation Secure Collection
 Initial system state (program inputs, ...) [Dureuil, 2016]
« Associated source code and documented toolchain. « SW benchmarks targeting Fl

- Attacker model .
« Fault model
- Attacker capabilities: controlled / observable variables (eg.inputs), etc.
- Attacker objectives -2 .
« in SW: target program address + predicates on data
« in HW: target state

Collection of C programs w/ multiple
variants of source-level hardening

Fault model: branch inversion
Two attacker models

- Attack scenarios: instances of attacker model allowing to reproduce a vulnerability (if relevant)

@ [Dureuil, 2016] FISSC: A Fault Injection and Simulation Secure Collection. 10.1007/978-3-319-45477-1 1

28

https://lazart.gricad-pages.univ-grenoble-alpes.fr/fissc/
https://doi.org/10.1007/978-3-319-45477-1_1

list
|

Fault Security Analysis and Verification:
Challenges and New Directions
Damien Couroussé — CEA List, Univ. Grenoble Alpes, France

Karine Heydemann — Thales DIS, France & LIP6, Sorbonne Univ., France
Mathieu Jan — CEA List, Univ. Grenoble Alpes, France

' B INSTITUT R
CARNOT H.«.&A université
| ‘ CEA LIST Grenoble Alpes PARIS-SACLAY

