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Abstract

We propose an online auto-tuning approach for computing kernels. Differently from exist-
ing online auto-tuners, which regenerate code with long compilation chains from the source
to the binary code, our approach consists on deploying auto-tuning directly at the level of
machine code generation. This allows auto-tuning to pay off in very short-running applica-
tions. As a proof of concept, our approach is demonstrated in two benchmarks, which execute
during hundreds of milliseconds to a few seconds only. In a CPU-bound kernel, the average
speedups achieved are 1.10 to 1.58 depending on the target micro-architecture, up to 2.53 in
the most favourable conditions (all run-time overheads included). In a memory-bound kernel,
less favourable to our runtime auto-tuning optimizations, the average speedups are 1.04 to
1.10, up to 1.30 in the best configuration. Despite the short execution times of our bench-
marks, the overhead of our runtime auto-tuning is between 0.2 and 4.2 % only of the total
application execution times. By simulating the CPU-bound application in 11 different CPUs,
we showed that, despite the clear hardware disadvantage of In-Order (IO) cores vs. Out-of-
Order (OOO) equivalent cores, online auto-tuning in IO CPUs obtained an average speedup
of 1.03 and an energy efficiency improvement of 39 % over the SIMD reference in OOO CPUs.

1 Introduction

High-performance general-purpose embedded processors are evolving with unprecedented grow in
complexity. ISA (Instruction set architecture) back-compatibility and energy reduction techniques
are among the main reasons. For sake of software development cost, applications do not necessarily
run in only one target, one binary code may run in processors from different manufacturers and
even in different cores inside a SoC (System on chip).

Iterative optimization and auto-tuning have been used to automatically find the best compiler
optimizations and algorithm implementations for a given source code and target CPU. These
tuning approaches have been used to address the complexity of desktop- and server-class processors
(DSCPs). They show moderate to high performance gains compared to non-iterative compilation,
because default compiler options are usually based on the performance of generic benchmarks
executed in representative hardware. Usually, such tools need long space exploration times to
find quasi-optimal machine code. Previous work addressed auto-tuning at run-time [17, 16, 10, 2],
however previously proposed auto-tuners are only adapted to applications that run for several
minutes or even hours, such as scientific or data center workload, in order to pay off the space
exploration overhead and overcome the costs of static compilation.

While previous work proposed run-time auto-tuning in DSCP, no work focused on general-
purpose embedded-class processors. In hand-held devices, applications usually run for a short
period of time, imposing a strong constraint to run-time auto-tuning systems. In this scenario,
a lightweight tool should be employed to explore pre-identified code optimizations in computing
kernels.

∗Extension of a Conference Paper published in the proceedings of MCSoC-16: IEEE 10th International Sympo-
sium on Embedded Multicore/Many-core Systems-on-Chip, Lyon, France, 2016.

1



We now explain our motivation for developing run-time auto-tuning tools for general-purpose
embedded processors:

Embedded core complexity. The complexity of high-performance embedded processors is follow-
ing the same trend as the complexity of DSCP evolved in the last decades. For example, current
64-bit embedded-class processors are sufficiently complex to be deployed in micro-servers, eventu-
ally providing a low-power alternative for data center computing. In order to address this growing
complexity and provide better performance portability than static approaches, online auto-tuning
is a good option.

Heterogeneous multi/manycores. The power wall is affecting embedded systems as they are
affecting DSCP, although in a smaller scale. Soon, dark silicon may also limit the powerable area
in embedded SoC. As a consequence, heterogeneous clusters of cores coupled to accelerators are
one of the solutions being adopted in embedded SoC. In the long term, this trend will exacerbate
software challenges of extracting the achievable computing performance from hardware, and run-
time approaches may be the only way to improve energy efficiency [6].

ISA-compatible processor diversity. In the embedded market, a basic core design can be imple-
mented by different manufacturers with different transistor technologies and also varying config-
urations. Furthermore, customized pipelines may be designed, yet being entirely ISA-compatible
with basic designs. This diversity of ISA-compatible embedded processors facilitates software
development, however because of differences in pipeline implementations, static approaches can
only provide sub-optimal performance when migrating between platforms. In addition, contrary
to DSCP, in-order (IO) cores are still a trend in high-performance embedded devices because of
low-power constraints, and they benefit more from target-specific optimizations than out-of-order
(OOO) pipelines.

Static auto-tuning performance is target-specific. In average, the performance portability of
statically auto-tuned code is poor when migrating between different micro-architectures [1]. Hence,
static auto-tuning is usually employed when the execution environment is known. On the other
hand, the trends of hardware virtualization and software packages in general-purpose processors
result in applications underutilizing the hardware resources, because they are compiled to generic
micro-architectures. Online auto-tuning can provide better performance portability, as previous
work showed in server-class processors [2].

Ahead-of-time auto-tuning. In recent Android versions (5.0 and later), when an application
is installed, native machine code is generated from bytecode (ahead-of-time compilation). The
run-time auto-tuning approach proposed in this work could be extended and integrated in such
systems to auto-tune code to the target core(s) or pre-profile and select the best candidates to
be evaluated in the run-time phase. Such approach would allow auto-tuning to be performed in
embedded applications with acceptable ahead-of-time compilation overhead.

Interaction with other dynamic techniques. Some powerful compiler optimizations depend both
on input data and the target micro-architecture. Constant propagation and loop unrolling are two
examples. The first can be addressed by dynamically specializing the code, while the second is
better addressed by an auto-tuning tool. When input data and the target micro-architecture are
known only at program execution, which is usually the case in hand-held devices, mixing those
two dynamic techniques can provide even higher performance improvements. If static versioning is
employed, it could easily lead to code size explosion, which is not convenient to embedded systems.
Therefore, run-time code generation and auto-tuning is needed.

In this article, we propose an online auto-tuning approach for computing kernels in ARM
processors. Existing online auto-tuners regenerate code using complex compilation chains, which
are composed of several transformation stages to transform source into machine code, leading to
important compilation times. Our approach consists on shortening the auto-tuning process, by
deploying auto-tuning directly at the code generation level, through a run-time code generation
tool, called deGoal [9]. This allows auto-tuning to be successfully employed in very short-running
kernels, thanks to the low run-time code generation overhead. Our very fast online auto-tuner
that can quickly explore the tuning space, and find code variants that are efficient on the running
micro-architecture. The tuning space can have hundreds or even thousands of valid binary code
instances, and hand-held devices may execute applications that last for a few seconds. Therefore,
in this scenario online auto-tuners have a very strong timing constraint. Our approach addresses
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this problem with a two-phase online exploration and by deploying auto-tuning directly at the level
of machine code generation.

The proposed approach is evaluated in a highly CPU-bound (favorable) and a highly memory-
bound (unfavorable) application, to be representative of all applications between these two extreme
conditions. In ARM platforms, the two benchmarks run during hundreds of milliseconds to only a
few seconds. In the favorable application, the average speedup is 1.26 going up to 1.79, all run-time
overheads included.

One interesting question that this work tries to answer is if run-time auto-tuning in simpler
and energy-efficient cores can obtain performance similar to statically compiled code run in more
complex and hence power-hungry cores. The aim is to compare the energy and performance of
IO and OOO designs, with the same pipeline and cache configurations, except for the dynamic
scheduling capability. This study would tell us at what extent run-time auto-tuning of code can
replace OOO execution. However, given that commercial IO designs have less resources than
OOO ones (e.g., smaller caches, branch predictor tables), a simulation framework was employed to
perform this experiment. The simulation results show that online micro-architectural adaption of
code to IO pipelines can in average outperform the hand vectorized references run in similar OOO
cores: despite the clear hardware disadvantage, the proposed approach applied to the CPU-bound
application obtained an average speedup of 1.03 and an energy efficiency improvement of 39 %.

This article begins by presenting in Section 2 a motivational example illustrating the potential
performance gains if auto-tuning is pushed to run time. Next, Section 3 presents the problem
statement of auto-tuning short-running kernels at run time and details the proposed online auto-
tuning approach. The prof of concept is presented through the implementation and analysis of two
case studies in Sections 4 and 5. Related work is presented in Section 6, and section 7 concludes.

2 Motivational example

In this section, we present an experiment supporting the idea that performance achievements
could be obtained by the combined use of run-time code specialization and auto-tuning. The
experiment is carried out with a SIMD version of the euclidean distance kernel implemented in
the Streamcluster benchmark, manually vectorized in the PARVEC [8] suite (originally from the
PARSEC 3.0 suite [4]). In the reference kernel, the dimension of points is a run-time constant, but
given that it is part of the input set, compilers cannot optimize it. In the following comparisons,
we purposefully set the dimension as a compile-time constant in the reference code to let the
compiler (gcc 4.9.3) generate highly optimized kernels (up to 15 % of speedup over generic versions).
This ensures a fair comparison with auto-tuned codes. With deGoal [9], in an offline setting,
we generated various kernel versions, by specializing the dimension and auto-tuning the code
implementation for an ARM Cortex-A8 and A9. The auto-tuned parameters mainly affect loop
unrolling and pre-fetching instructions, and are detailed in Section 3.1. Figure 1 shows the speedups
of various generated kernels in the two core configurations. By analyzing the results, we draw
several motivating ideas:

Code specialization and auto-tuning provide considerable speedups even compared to statically
specialized and manually vectorized code: Auto-tuned kernel implementations obtained speedups
going up to 1.46 and 1.52 in the Cortex-A8 and A9, respectively.

The best set of auto-tuned parameters and optimizations varies from one core to another : In
both cases in Figure 1, there is a poor performance portability of the best configurations between
the two cores. For example, in Figure 1(b), when the best kernel for the Cortex-A8 is executed
in the A9, the execution time increases by 55 %, compared to the best kernel for the latter.
Conversely, the best kernel for the A9 when executed in the A8 increases the execution time by
21 %, compared to the most performing kernel.

There is no performance correlation between the sets of optimizations and input data: The main
auto-tuned parameters are related to loop unrolling, which depends on the dimension of points
(part of the input set). In consequence, the exploration space and the optimal solution depend on
an input parameter. For example, the configurations of the top five peak performances for the A8
in Figure 1(b) (configurations 30, 66, 102, 137 and 138) have poor performances in Figure 1(a) or
simply can not generate code with a smaller input set.
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(a) 1-D projection of the auto-tuning exploration space. Dimension = 32

(b) 1-D projection of the auto-tuning exploration space. Dimension = 128

Figure 1: Speedups of euclidean distance kernels statically generated with deGoal. The reference
is a hand vectorized kernel (from PARVEC) compiled with gcc 4.9.3 and highly optimized to each
target core (-O3 and -mcpu options). Both deGoal and reference kernels have the dimension of
points specialized (i.e. set as a compile-time constant). The exploration space goes beyond 600
configurations, but here it was zoomed in on the main region. The peak performance of each core
is labeled. Empty results in the exploration space correspond to configurations that could not
generate code.

The results suggest that, although code specialization and auto-tuning provide high perfor-
mance improvements, they should ideally be performed only when input data and target core are
known. In the released input sets for Streamcluster, the dimensions are 32, 64 and 128, but the
benchmark accepts any integer value. Therefore, even if the target core(s) was (were) known at
compile time and the code was statically specialized, auto-tuned and versioned, it could easily lead
to code size explosion.

We demonstrate in the following sections that the most important feature of our approach is
that it is fast enough to enable the specialization of run-time constants combined with online auto-
tuning, allowing the generation of highly optimized code for a target core, whose configuration
may not be known prior compilation.

The optimized kernels shown in this motivational example were statically auto-tuned. The
run-time auto-tuning approach proposed in this work successfully found optimized kernels whose
performance is in average only 6 % away from the performance of the best kernels statically found
(all run-time overheads included). It is worth observing that the auto-tuning space has up to
630 valid versions: its exploration took several hours per dimension and per platform, even if the
benchmark runs for a few seconds.

3 Online auto-tuning approach

This section describes the approach of the proposed online auto-tuner. Figure 2 presents the
architecture of the framework that auto-tunes a function at run time. At the beginning of the
program execution, a reference function (e.g., C compiled code) is evaluated accordingly to a
defined metric (execution time in the experiments presented here). This reference function starts
as the active function. In parallel to the program execution, the auto-tuning thread periodically
wakes up and decides if it is time to generate and evaluate a new version. The active function is
replaced by the new one, if its score is better. This approach is applicable to computing kernels
frequently called.

Sections 3.1, 3.3 and 3.4 describe the implementation of each block from the main loop of
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Figure 2: Architecture of the run-time auto-tuning framework.

Figure 2. Section 3.2 presents the problem statement of exploring the tuning space of short-running
kernels at run-time.

3.1 Parametrizable function generator

New versions of functions are generated by a tool called deGoal. It implements a domain specific
language for run-time code generation of computing kernels. It defines a pseudo-assembly RISC-like
language, which can be mixed with standard C code. The machine code is only generated by deGoal
instructions, while the management of variables and code generation decisions are implemented by
deGoal pseudo-instructions, optionally mixed with C code. The dynamic nature of the language
comes from the fact that run-time information can drive the machine code generation, allowing
program and data specialization.

deGoal supports high-performance ARM processors from the ARMv7-A architecture, includ-
ing FP and SIMD instructions. A set of C functions were also created to be called in the host
application or inside a function generator to configure the code generation, allowing the evaluation
of the performance impact of various code generation options.

To illustrate some auto-tuning possibilities and how the dynamic language works, Figure 3
presents the deGoal code to auto-tune the euclidean distance implementation, focusing on the main
loop of the kernel. This is the code used in the motivational example presented in Section 2, and
also in the run-time auto-tuning experiments later in this work. Statements between the symbols
#[ and ]# are recognized as the dynamic language, which are statically converted to standard C
code, calling deGoal library code to generate machine instructions at run time. Other statements
are standard C code. An important symbol in the dynamic language is the sign #(): any C
expression placed between the parenthesis will be dynamically evaluated, allowing the inlining of
run-time constants or immediate values.

The kernel generator (called compilette in the deGoal jargon) description represented in Figure 3
can generate different machine codes, depending on the arguments that it receives. In line 1, the
first argument is the dimension, which is specialized in this example. The four following arguments
are the auto-tuned parameters:

• Hot loop unrolling factor (hotUF): Unrolls a loop and processes each element with a
different register, in order to avoid pipeline stalls.

• Cold loop unrolling factor (coldUF): Unrolls a loop by simply copy-pasting a pattern of
code, using fewer registers, but potentially creating pipeline stalls.

• Normalized vector length (vectLen): Defines the length of the vector used to process
elements in the loop body, normalized to the SIMD width when generating SIMD instructions
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(four in the ARM ISA). Longer vectors may benefit code size and speed, because instructions
that load multiple registers instructions may be generated.

• Data pre-fetching stride (pldStride): Defines the stride in bytes used in hint instructions
to try to pre-fetch data of the next loop iteration.

Given that the dimension is specialized (run-time constant), we know exactly how many ele-
ments are going to be processed in the main loop. Hence, between the lines 5 and 21, the pair
of deGoal instructions loop and loopend can produce three possible results, depending on the
dimension and the unrolling factors:

1. No code for the main loop is generated if the dimension is too small. The computation is
then performed by a leftover code (not shown in Figure 3).

2. Only the loop body is generated without any branch instruction, if the main loop is completely
unrolled.

3. The loop body and a backward branch are generated if more than one iteration is needed
(i.e. the loop is partially unrolled).

The loop body iterates over the coordinates of two points (referenced by coord1 and coord2)
to compute the squared euclidean distance. The computation is performed with vectors, but for
the sake of paper conciseness, variable allocation is not shown in Figure 3. Briefly, in the loop
body, lines 8 and 9 load vectLen coordinates of each point into vectors, lines 14 and 15 compute
the difference, squaring and accumulation, and finally outside the loop, line 23 accumulates the
partial sums in each vector element of Vresult into result. Between the lines 6 and 20, the
loop body is unrolled by mixing three auto-tuning effects, whose parameters are highlighted in
Figure 3: the outer for (line 6) simply replicates coldUF times the code pattern in its body,
the inner for (line 7) unrolls the loop hotUF times by using different registers to process each
pair of coordinates, and finally the number of elements processed in the inner loop is set through
the vector length vectLen. In the lines 10 to 13, the last auto-tuned parameter affects a data
pre-fetching instruction: if pldStride is zero, no pre-fetching instruction is generated, otherwise
deGoal generates a hint instruction that tries to pre-fetch the cache line pointed by the address of
the last load plus pldStride.

Besides the auto-tuning possibilities, which are explicitly coded with the deGoal language, a
set of C functions can be called to configure code generation options. In this work, three code
optimizations were studied:

• Instructions scheduling (IS): Reorders instructions to avoid stall cycles and tries to max-
imize multi-issues.

• Stack minimization (SM): Only uses FP scratch registers to reduce the stack management
overhead.

• Vectorization (VE): Generates SIMD instructions to process vectors.

Most of the explanations presented in this section were given through examples related to
the Streamcluster benchmark, but partial evaluation, loop unrolling and data pre-fetching are
broadly used compiler optimization techniques that can be employed in almost any kernel-based
application.

3.2 Space exploration: Problem statement

The tuning space can be represented by a discrete space with Ncpar dimensions, where each
dimension corresponds to a parameter being auto-tuned. Each point in this space correspond to a
binary code instance. To evaluate the tuning space, a compilette is driven by Ncpar = 7 parameters
Nci that control the code generation (hotUF, coldUF, vectLen, pldStride, IS, SM and VE). More
precisely each parameter has a RangeSize, in our example in Figure 3, vectLen belongs to a small
set of discrete numbers and RangeSize(vectLen) = 3, provided by the structure of the kernel.
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1 dist_gen(int dim , int vectLen , int hotUF , int coldUF , int pldStride)
2 {
3 numIter = function(dim , vectLen , hotUF , coldUF);
4 (...)
5 #[ loop #( numIter) ]#
6 for (j = 0; j < coldUF; ++j) {
7 for (i = 0; i < hotUF; ++i) {
8 #[ lw Vc1 [#(i)], coord1 ]#
9 #[ lw Vc2 [#(i)], coord2 ]#

10 if (pldStride != 0) {
11 #[ pld coord1 , #(( vectLen -1)*4 + pldStride) ]#
12 #[ pld coord2 , #(( vectLen -1)*4 + pldStride) ]#
13 }
14 #[ sub Vc1[#(i)], Vc1 [#(i)], Vc2[#(i)] ]#
15 #[ mac Vresult , Vc1[#(i)], Vc1[#(i)] ]#
16
17 #[ add coord1 , coord1 , #( vectLen *4) ]#
18 #[ add coord2 , coord2 , #( vectLen *4) ]#
19 }
20 }
21 #[ loopend ]#
22 (...)
23 #[ add result , Vresult ]#
24 (...)
25 }

Figure 3: Main loop of the deGoal code to auto-tune the euclidean distance kernel in the Stream-
cluster benchmark. The first function parameter is the specialized dimension, and the other four
are the auto-tuned parameters (highlighted variables).

The number of binary code instances is NcodeV ariants, each one corresponding to a possible kernel
version. Each version is pertinent or not on a given architecture. We can compute NcodeV ariants

with the following equation:

NcodeV ariants =

Ncpar−1∏
i=0

RangeSize(Nci) (1)

The low-level binary code generator is in charge to adapt a given variant on a given micro-
architecture. A given micro-architecture has constraints such as number of registers, availability
of accelerators and cache sizes, to name a few. These constraints combined with the structure of
the code explain why the tuning space has holes, where code generation is not possible as shown
in Figure 1.

The micro-architecture description can also be defined as a discrete space similar to the tuning
space, where each dimension corresponds to one architectural parameter. Tables 1 and 2 describe
the architecture subspace we focus on. In this article we focus on a small subset of 2 real and 11
simulated micro-architectures, but the market of the embedded systems has many more variants.

This paper proposes a very fast online auto-tuner that can quickly explore the tuning space, and
find code variants that are efficient on the running micro-architecture. The tuning space can have
hundreds or even thousands of valid binary code instances, and hand-held devices may execute
applications that last for a few seconds. Therefore, in this scenario online auto-tuners have a very
strong timing constraint. Our approach address this problem with a two-phase online exploration
and by deploying auto-tuning directly at the level of machine code generation.

3.3 Regeneration decision and space exploration

The regeneration decision takes into account two factors: the regeneration overhead and the
achieved speedup since the beginning of the execution. The first one allows to keep the run-
time overhead of the tool at acceptable limits if it fails to find better kernel versions. The second
factor acts as an investment, i.e. allocating more time to explore the tuning space if previously
found solutions provided sufficient speedups. Both factors are represented as percentage values,
for example limiting the regeneration overhead to 1 % and investing 10 % of gained time to explore
new versions.

7



To estimate the gains, the instrumentation needed in the evaluated functions is simply a variable
that increments each time the function is executed. Knowing this information and the measured
run-time of each kernel, it is possible to estimate the time gained at any moment. However, given
that the reference and the new versions of kernel have their execution times measured only once,
the estimated gains may not be accurate if the application has phases with very different behaviors.

Given that the whole space exploration can have hundreds or even thousands of kernel versions,
it was divided in two online phases:

• First phase: Explores auto-tuning parameters that have an impact on the structure of the
code, namely, hotUF, coldUF and vectLen, but also the vectorization option (VE). The pre-
vious list is also the order of exploration, going from the least switched to the most switched
parameter. The initial state of the remaining auto-tuning parameters are determined through
pre-profiling.

• Second phase: Fixes the best parameters found in the previous phase and explores the
combinatorial choices of remaining code generation options (IS, SM) and pldStride.

In our experiments, the range of hotUF and vectLen were defined by the programmer in a way
to avoid running out of registers, but these tasks can be automated and dynamically computed by
taking into account the code structure (static) and the available registers (dynamic information).
Compared to coldUF, their ranges are naturally well bounded, providing an acceptable search
space size.

The range of coldUF was limited to 64 after a pre-profiling phase, because unrolling loops
beyond that limit provided almost no additional speedup.

The last auto-tuned parameter, pldStride, was explored with the values 32 and 64, which are
currently the two possible cache line lengths in ARM processors.

Finally, to optimize the space exploration, first the tool searches for kernel implementations
that have no leftover code. After exhausting all possibilities, this condition is softened by gradually
allowing leftover processing.

3.4 Kernel evaluation and replacement

The auto-tuning thread wakes up regularly to compute the gains and determine if it is time to
regenerate a new function. Each new version is generated in a dynamically allocated code buffer,
and then its performance is evaluated. When the new code has a better score than that of the
active function, the global function pointer that references the active function is set to point to the
new code buffer. In order to evaluate a new kernel version, the input data (i.e., processed data)
used in the first and second phases can be either:

• Real input data only: Evaluates new kernel versions with real data, performing useful
work during evaluation, but suffering from measurement oscillations between independent
runs. These oscillations can sometimes lead to wrong kernel replacement decisions.

• Training & real input data: Uses training data with warmed caches in the first phase and
real data in the second one. A training input set with warmed caches results in very stable
measurements, which ensure good choices for the active function. Since no useful work is
performed, using training data is only adapted to kernels that are called sufficient times to
consider the overhead of this technique negligible, and to kernels that have no side effect. In
the second phase, the usage of real data is mandatory, because the adequacy of pre-fetching
instruction depends on the interaction of the real data and code with the target pipeline.

When the evaluation uses real data, the performance of the kernel is obtained by simply aver-
aging the run-times of a pre-determined number of runs.

When the kernel uses a training input data, the measurements are filtered. We took the worst
value between the three best values of groups with five measurements. This technique filters un-
wanted oscillations caused by hardware (fluctuations in the pipeline, caches and performance coun-
ters) and software (interruptions). In the studied platforms, stable measurements were observed,
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with virtually no oscillation between independent runs (in a Cortex-A9, we measured oscillations
of less than 1 %).

The decision to replace the active function by a new version is taken by simply comparing the
calculated run-times.

4 Experimental setup

This section presents the experimental setup. First, we detail the hardware and simulation plat-
forms employed in the experiments. Then, the chosen applications for two case studies are de-
scribed. The kernel run-times and the auto-tuning overhead are measured through performance
counters.

4.1 Hardware platforms

Two ARM boards were used in the experiments. One is the Snowball equipped with a dual Cortex-
A9 processor [7], an OOO pipeline. The board runs the Linaro 11.11 distribution with a Linux
3.0.0 kernel. The other is the BeagleBoard-xM, which has an IO Cortex-A8 core [3]. The board
runs a Linux 3.9.11 kernel with an Ubuntu 11.04 distribution.

In order to evaluate the online auto-tuning overhead per core, the benchmarks are forced
to execute in one core through the Linux command taskset, because the code regeneration is
performed in a separated thread. The fact that auto-tuning in performed in single-cores is not
a limitation of the framework. The proposed approach can be extended to locally auto-tune the
code of a kernel in each core of a heterogeneous multicore system.

4.2 Simulation platform

A micro-architectural simulation framework [11], [12] was used to simulate 11 different core con-
figurations. It is a modified version of the gem5 [5] and McPAT [15] frameworks, for performance
and power/area estimations, respectively. Table 1 shows the main configurations of the simulated
cores. The 11 configurations were obtained by varying the pipeline type (IO and OOO cores) and
the number of VPUs (FP/SIMD units) of one-, two- and three-way basic pipelines. The single-issue
core is IO an has only one VPU. Dual-issue cores can have one or two VPUs, while triple-issue
cores can have one, two or three VPUs. In McPAT, the temperature is fixed at 47 ◦C and the
transistor technology is 28 nm. Table 2 shows the abbreviations used to identify each core design
and their CPU areas.

4.3 Benchmarks

Two kernel-based applications were chosen as case studies to evaluate the proposed online auto-
tuning approach. To be representative, one benchmark is CPU-bound and the other is memory-
bound. In both applications, the evaluated kernels correspond to more than 80 % of execution
time. The benchmarks were compiled with gcc 4.9.3 (gcc 4.5.2 for Streamcluster binaries used in
the simulations) and the default PARSEC flags (-O3 -fprefetch-loop-arrays among others).
The NEON flag (-mfpu=neon) is set to allow all 32 FP registers to be used. The target core
is set (-mcpu option) for the real platforms and the ARMv7-A architecture (-march=armv7-a)
for binaries used in the simulations. The deGoal library was also compiled for the ARMv7-A
architecture, which covers all real and simulated CPUs.

The first kernel is the euclidean distance computation in the Streamcluster benchmark from
the PARSEC 3.0 suite. It solves the online clustering problem. Given points in a space, it tries
to assign them to nearest centers. The clustering quality is measured by the sum of squared
distances. With high space dimensions, this benchmark is CPU-bound [4]. In the compilette
definition, the dimension (run-time constant) is specialized. The simsmall input set is evaluated
with the dimensions 32 (original), 64 and 128 (as in the native input set), which are referred as
small, medium and large input sets, respectively.

The second kernel is from VIPS, an image processing application. A linear transformation is
applied to an image with the following command line:
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Table 2: Abbreviation of the simulated core designs and CPU areas

Abbrev. Width Type VPUs
Area (mm2)

Core L2 Total

SI-I1 1 IO 1 0.45 1.52 1.97
TI-I1 3 IO 1 1.81 5.88 7.70
TI-I2 3 IO 2 2.89 5.88 8.78
DI-I1 2 IO 1 1.00 3.19 4.19
TI-I3 3 IO 3 3.98 5.88 9.86
DI-I2 2 IO 2 1.48 3.19 4.67
TI-O1 3 OOO 1 2.08 5.88 7.97
DI-O1 2 OOO 1 1.15 3.19 4.34
TI-O2 3 OOO 2 3.21 5.88 9.10
DI-O2 2 OOO 2 1.67 3.19 4.86
TI-O3 3 OOO 3 4.35 5.88 10.2

vips im_lintra_vec MUL_VEC input.v ADD_VEC output.v

Here, input.v and output.v are images in the VIPS XYZ format, and MUL VEC, ADD VEC are
respectively FP vectors of the multiplication and addition factors for each band applied to each
pixels in the input image. Given that pixels are loaded and processed only once, it is highly
memory-bound. Indeed, the auto-tuned parameters explored in this work are not suitable for
a memory-bound kernel. However, this kind of kernel was also evaluated to cover unfavorable
situations and show that negligible overheads are obtained. In the compilette description, two
run-time constants, the number of bands and the width of the image, are specialized. Three input
sets were tested: simsmall (1600 x 1200), simmedium (2336 x 2336) and simlarge (2662 x 5500).

4.4 Evaluation methodology

The execution time of the applications is measured through the Linux command time. Between 3
and 20 measurements were collected depending on observed oscillations.

The proposed online approach can auto-tune both SISD1 and SIMD codes during the appli-
cation execution. In order to allow a fair comparison between the proposed approach and the
references, the auto-tuning internally generates and evaluates both SIMD and SISD code, but
when comparing to the SISD reference, SIMD generated codes are ignored and only SISD kernels
can be active in the application, and vice-versa. In a real scenario, the performance achieved by
the proposed approach is the best among the SISD and SIMD results presented in this work. The
SISD reference is taken as initial active function, because this is a realistic scenario.

In the real platforms, the tuning space is also statically explored to find the best kernel im-
plementation per platform and per input set. In order to limit prohibitive exploration times, the
search was limited to only optimal solutions (no leftovers) in Streamcluster and to at least 1000
points in the search space for VIPS, because some input sets had only few optimal solutions. Part
of this exploration is shown in Figure 1.

5 Experimental results

This section presents the experimental results of the proposed online auto-tuning approach in a
CPU- and a memory-bound kernels. First, the results obtained in real and simulated platforms
are presented. Then, experiments with varying workload size is discussed. Finally, an analysis of
auto-tuning parameter correlation to pipeline designs is presented.

1Single instruction, single data.

11



(a) Streamcluster in Cortex-A8 (b) Streamcluster in Cortex-A9

(c) VIPS in Cortex-A8 (d) VIPS in Cortex-A9

Figure 4: Speedup of the specialized reference and the auto-tuned applications in the real platforms
(normalized to the reference benchmarks).

5.1 Real platforms

Table 3 presents the execution times of all configurations studied of the two benchmarks in the
real platforms.

Figures 4(a) and 4(b) show the speedups obtained in the Streamcluster benchmark. Run-
time auto-tuning provides average speedup factors of 1.12 in the Cortex-A8 and 1.41 in the A9.
The speedup sources come mostly from micro-architectural adaption, because even if the reference
kernels are statically specialized, they can not provide significant speedups. The online auto-tuning
performance is only 4.6 % and 5.8 % away from those of the best statically auto-tuned versions,
respectively for the A8 and A9.

Still in Streamcluster, from Table 3 we can also note that in the A9, the SIMD reference versions
are in average 11 % slower than the SISD references, because differently from the SISD reference
data pre-fetching instructions are not generated by gcc in the SIMD code. The online approach
can effectively take advantage of SIMD instructions in the A9, providing in average a speedup of
1.41 compared to the SISD reference code and 1.13 compared to dynamically auto-tuned SISD
code.

Figures 4(c) and 4(d) show the speedups obtained in the VIPS application. Even with the
hardware bottleneck being the memory hierarchy, in average the proposed approach can still speed
up the execution by factors of 1.10 and 1.04 in the A8 and A9, respectively. Most of the speedups
come from SISD versions (SIMD performances almost matched the references), mainly because
in the reference code run-time constants are reloaded in each loop iteration, differently from the
compilette implementation. In average, online auto-tuning performances are only 6 % away from
the best static ones.

Table 4 presents the auto-tuning statistics in both platforms. For each benchmark and input
set, it shows that between 330 and 858 different kernel configurations could be generated, but
in one run this space is limited between 39 and 112 versions, thanks to the proposed two phase
exploration (Section 3.3). The online statistics gathered in the experiments are also presented. In
most cases, the exploration ends very quickly, specially in Streamcluster, in part because of the
investment factor. Only with the small input in VIPS, the auto-tuning did not end during its
execution, because it has a large tuning space and VIPS executes during less than 700 ms. The
overhead of the run-time approach is negligible, between only 0.2 and 4.2 % of the application
run-times were spent to generate and evaluate from 28 to 75 kernel versions.
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5.2 Simulated cores

Figure 5 shows the simulated energy and performance of the reference and online auto-tuning
versions of the Streamcluster benchmark. In the SISD comparisons, run-time auto-tuning can find
kernel implementations with more ILP (Instruction-level parallelism) than the reference code, spe-
cially remarkable in the long triple-issue pipelines. The average speedup is 1.58. In the SIMD com-
parisons, the reference kernel naturally benefits from the parallelism of vectorized code, nonetheless
online auto-tuning can provide an average speedup of 1.20. Only 6 of 66 simulations showed worse
performance, mostly in big cores that quickly executed the benchmark.

In terms of energy, in general, there is no surprise that pipelines with more resources consume
more energy, even if they may be faster. However, there are interesting comparisons between equiv-
alent IO and OOO cores. Here, the term equivalent means that cores have similar configurations,
except the dynamic scheduling capability. Figure 6(d) shows the area overhead of OOO cores
compared to equivalent IO designs.

Still analyzing Streamcluster, when the reference kernels execute in equivalent IO cores, their
performance is worsened in average by 16 %, yet being 21 % more energy efficient. On the other
hand, online auto-tuning improves those numbers to 6 % and 31 %, respectively. In other words,
the online approach can considerably reduce the performance gap between IO and OOO pipelines
to only 6 %, and further improve energy efficiency.

It is also interesting to compare reference kernels executed in OOO cores to online auto-tuning
versions executed in equivalent IO ones. Despite the clear hardware disadvantage, the run-time
approach can still provide average speedups of 1.52 and 1.03 for SISD and SIMD, and improve the
energy efficiency by 62 % and 39 %, respectively, as Figure 6(c) illustrates.

In the simulations of VIPS, the memory-boundedness is even more accentuated, because the
benchmark is only called once and then Linux does not have the chance to use disk blocks cached in
RAM. The performance of the proposed approach virtually matched those of the reference kernels.
The speedups oscillate between 0.98 and 1.03, and the geometric mean is 1.00. Considering that
between 29 and 79 new kernels were generated and evaluated during the benchmark executions,
this demonstrates that the proposed technique has negligible overheads if auto-tuning can not find
better versions.

5.3 Analysis with varying workload

To better illustrate the behavior of the online auto-tuning framework, we further analyzed its
behavior in the CPU-bound benchmark, with varying size of input set and hence execution time.
The dimension was varied between 4 and 128 (the native dimension), and the workload through
the number of points between 64 and 4096 (that of simsmall). The other parameters were set as
those in the simsmall input set.

Figure 7 shows all the results in the two real platforms. Globally, the online auto-tuning
framework can find the right balance of space exploration for SISD code, in average obtaining
speedups between 1.05 and 1.11, in applications that run for tens of milliseconds to tens of seconds.
On the other hand, for SIMD auto-tuning, average speedups go from 0.80 to 1.29, with considerable
slowdowns in the A8 when the applications run during less than one second.

Figures 7(a) and 7(c) show the speedups obtained in the Cortex-A8. We observe that SISD auto-
tuning has almost always positive speedups, but SIMD auto-tuning shows considerable slowdowns
with small workloads. There are two facts that combined explain these slowdowns: the initial
active function is the SISD reference code, and in the Cortex-A8, SISD FP instructions execute
in the non-pipelined VFP extension, but the SIMD ones execute in the pipelined NEON unit.
Therefore, because the benchmark starts executing SISD code from PARSEC and the reference
run-time comes from the SIMD code from PARVEC, with small workloads, online auto-tuning can
not pay off.

Figures 7(b) and 7(d) show the same analysis in the Cortex-A9. In this core, the VFP and
NEON units are both pipelined. In consequence, the considerable slowdowns observed in the
A8 with SIMD auto-tuning does not happen. In average, run-time auto-tuning provides positive
speedups. As in the A8, SISD auto-tuning almost always results in positive speedups. SIMD auto-
tuning shows slowdowns with small workloads, but after its crossover around 500 ms, speedups go
up to almost 1.8.
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(a) Small input set.

(b) Medium input set.

(c) Large input set.

Figure 5: Speedup and energy efficiency improvement of online auto-tuning over the references
codes in the Streamcluster benchmark, simulating the 11 cores. Core abbreviations are listed in
Table 2.
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(a) Speedup of IO vs OOO cores. (b) Energy efficiency of IO vs OOO cores.

(c) Energy efficiency and performance improvement of online
auto-tuning in IO vs reference in OOO cores.

(d) Area overhead of OOO vs IO (ex-
cluding L2 caches).

Figure 6: Energy, performance and area of IO vs OOO core designs, simulating the Streamcluster
benchmark.

5.4 Analysis of correlation between auto-tuning parameters and pipeline
designs

Table 5 shows the average auto-tuning parameter values of the best kernel configurations dynam-
ically found in the 11 simulated cores, running the Streamcluster benchmark. Figure 8 presents
them in the normalized range from 0 to 1. By analyzing the statistics, it is possible to correlate
some of the most performing parameters to the pipeline designs:

• hotUF: This parameter loosely correlates with the dynamic scheduling capability of the
pipeline. Given that it corresponds to the loop unrolling factor without register reuse, bal-
anced OOO cores do not benefit from it, because register renaming does the same in hardware
and allocating more registers can increase the stack and register management. Then, 3 of
the 4 cores where hotUF was not 1 are IO designs.

• coldUF: This parameter correlates with pipeline depth. It corresponds to the loop unrolling
factor with register reuse, and benefits shallow execution stages. This happens probably
because of three factors: the dynamic instruction count (DIC) is reduced when a loop is
unrolled, coldUF is the only parameter that allows aggressive unrolling factors, and deeper
pipelines need more ILP than reduced DIC. In consequence, higher coldUF values are found
in single- and dual-issue designs.

• vectLen: It correlates with the pipeline width. This parameter defines the length of process-
ing vectors in the loop body, and enables higher ILP. That is why triple-issue designs have
vectLen ≥ 3, while narrower pipelines have it around 2.

• pldStride: It has no clear correlation, possibly because all cores have stride prefetchers and
the same L1 cache line length.

• Stack minimization (SM): This code generation option has a loose correlation with the dy-
namic scheduling capability of the pipeline. Even with fewer architectural registers available
for allocation, OOO designs can still get rid of false register dependencies by renaming ar-
chitectural registers. The reduced stack management can then speed up execution.
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(a) Varying dimension in the Cortex-A8. (b) Varying dimension in the Cortex-A9.

(c) Varying workload in the Cortex-A8. (d) Varying workload in the Cortex-A9.

Figure 7: Analysis of the online auto-tuning speedups in Streamcluster with varying dimension
and workload (though the number of points in the space), compared to the static references. Other
parameters are those from the simsmall input set.
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Table 5: Average of the best auto-tuning parameters for the Stream-
cluster benchmark, in the 11 simulated cores. Between parenthesis,
the parameter ranges are shown.

Core
hotUF coldUF vectLen pldStride SM IS
(1-4) (1-64) (1-4) (0, 32, 64) (0, 1) (0, 1)

SI-I1 1.0 11.7 2.3 21 0.2 0.8
DI-I1 1.3 7.3 2.0 43 0.2 1.0
DI-I2 1.3 12.0 2.0 37 0.0 1.0
DI-O1 1.0 2.5 2.0 27 0.2 0.8
DI-O2 1.2 12.7 2.0 37 0.2 1.0
TI-I1 1.5 3.3 3.0 48 0.0 1.0
TI-I2 1.0 3.7 3.7 48 0.0 1.0
TI-I3 1.0 3.7 3.7 43 0.0 1.0
TI-O1 1.0 3.2 3.0 37 0.3 0.7
TI-O2 1.0 3.3 3.7 21 0.2 1.0
TI-O3 1.0 3.2 3.7 27 0.2 0.8

(a) Abscissa: from simpler to more complex cores. (b) Abscissa: from simpler to more complex cores, IO
first.

Figure 8: Normalized values of the averaged best auto-tuning parameters for the Streamcluster
benchmark, in the 11 simulated cores. pldStride is not shown. Core abbreviations are listed in
Table 2.

• Instruction scheduling (IS): All types of pipeline benefit from instruction scheduling. OOO
designs may sometimes not need scheduling at all, as we observe in 3 of 5 OOO cores, whose
average utilization of IS was not 1.

In this study, we observed correlations between auto-tuning parameter and pipeline features.
The results corroborate the capability of the auto-tuning system to adapt code to different micro-
architectures. On the other hand, precise correlations could not be identified, because the best auto-
tuning parameters depend on several factors (system load, initial pipeline state, cache behavior,
application phases, to name a few), whose behaviors can not be easily modeled in complex systems.
Online auto-tuning is a very interesting solution in this scenario.

6 Related work

ADAPT [17] was one of the first frameworks to dynamically optimize a running application, without
prior user intervention. The dynamic compilation was performed in an external processor or in
a free processor inside the computing system. In three experiments, ADAPT obtained speedups
between 1.00 and 1.40 in workloads that run during more than one hour on an uniprocessor.

Active Harmony [16] is a run-time compilation and tuning framework for parallel programs.
By defining a new language, programmers can express tunable parameters and their range, which
are explored at run time. In experiments performed in cluster of computers, the code generation
is deployed in idle machines, in parallel to the running application. Active Harmony provided
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average speedups between 1.11 and 1.14 in two scientific applications, run with various problem
sizes and in three different platforms. In their experiments, the minimum time required to obtain
speedups was more than two minutes running in a cluster with 64 cores.

IODC [10] is a framework of iterative optimization of data center programs within and across
runs, which is transparent to the user. The key idea is to control the intensity of space exploration
(recompilations and runs) accordingly to the savings achieved since the beginning of the iterative
process. In six compute-intensive workload, IODC achieved an average speedup of 1.14, after
thousands of runs.

SiblingRivalry [2] is an auto-tuning technique in which half of cores in homogeneous multicore
processors are used to explore different auto-tuning possibilities with online learning, while the
other half run the best algorithm found so far. It can both adapt code on-the-fly to changing load
in the system, and to migrations between micro-architectures. In this latter case, after running 10
minutes, in average this approach both speeded up by 1.8 and reduced the energy consumption of
eight benchmarks by 30 %, compared to statically auto-tuning code for Intel Xeon and running in
AMD Opteron, and vice-versa (reference versions were allowed to use all cores).

UNIDAPT is a framework that enables dynamic optimizations through static multi-version-
ing [13], and it is part of the Collective Mind Framework [14]. A small set of pre-optimized
versions of a code together with online learning allow to quickly select the most appropriate ver-
sions at run-time, predicting or reacting to changing underlying (heterogeneous) architectures or
varying program phases.

Previous work proposed online auto-tuning in DSCPs, usually regenerating code in idle cores
or machines. ADAPT, IODC and SiblingRivalry required several minutes, hours or runs to ob-
tain performance gains over static compilation. Active Harmony obtained speedups after only two
minutes, but using idle cores in a cluster of computers. Instead, our work is the first to focus
on embedded processors, implementing online auto-tuning in short-running kernels, and obtain-
ing positive speedups after hundreds of milliseconds, without extra cores to regenerate code and
including all overheads. UNIDAPT has also a very low run-time overhead, because good code
versions are statically found through iterative compilation, however with radical changes of mi-
cro-architecture or input data size, static multi-versioning may not be able to obtain the desired
performance with a small number of versions or may lead to code size explosion. The average
speedups achieved by our framework (1.16 in 2 real cores and 1.17 in 11 simulated cores) in 12
benchmark configurations (2 benchmarks, 3 input sets, SISD and SIMD) are comparable to those
obtained by previous work, except SiblingRivalry that achieved higher speedups, but in a differ-
ent experimental setup. Furthermore, our approach is scalable to heterogeneous multi/manycores,
because the same computing kernel running in distinct threads can be locally auto-tuned to each
core configuration, thanks to the low overheads per core.

In addition, in a detailed simulation experiment of 60 running configurations (10 similar IO
and OOO CPUs running 1 benchmark with 3 input sets, SISD and SIMD), we demonstrated that
our online approach can virtually replace hardware out-of-ordering, running a highly CPU-bound
benchmark in IO designs, still widely deployed in the embedded market. These are new results,
and to the best of our knowledge, no previous work tried to elucidate and quantify this possibility.

7 Conclusion

In this paper, we presented an approach to implement run-time auto-tuning kernels in short-
running applications. This work advances the state of the art of online auto-tuning. To the
best of our knowledge, this work is the first to propose an approach of online auto-tuning that
can obtain speedups in short-running kernel-based applications. Our approach can both adapt a
kernel implementation to a micro-architecture unknown prior compilation and dynamically explore
auto-tuning possibilities that are input-dependent.

We demonstrated through two case studies in real and simulated platforms that the proposed
approach can speedup a CPU-bound kernel-based application up to 1.79 and 2.53, respectively,
and has negligible run-time overheads when auto-tuning does not provide better kernel versions.
In the second application, even if the bottleneck is in the main memory, we observed speedups up
to 1.30 in real cores, because of the reduced number of instructions executed in the auto-tuned

19



versions.
Energy consumption is the most constraining factor in current high-performance embedded

systems. By simulating the CPU-bound application in 11 different CPUs, we showed that run-
time auto-tuning can reduce the performance gap between IO and OOO designs from 16 % (static
compilation) to only 6 %. In addition, we demonstrated that online micro-architectural adaption
of code to IO pipelines can in average outperform the hand vectorized references run in similar
OOO cores. Despite the clear hardware disadvantage, online auto-tuning in IO CPUs obtained an
average speedup of 1.03 and an energy efficiency improvement of 39 % over the SIMD reference in
OOO CPUs.
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