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Embedded systems often exhibit memory organizations far from those of general purpose computing sys-
tems. Distributed and private memories, absence of address virtualization are frequent burdens of system
and application developer. Thus, dynamic memory allocation in the context of embedded systems is a difficult
issue. Moreover, with the increasing amount of parallelism in embedded systems architectures and program,
an additional stress is put on dynamic memory allocation, due to the out-of-order nature of parallel appli-
cations. This paper presents a flexible memory allocator able to handle complex memory organizations of
embedded systems. The memory allocator leverages dynamic code generation so that flexibility is not at the
expense of performances. In fact, we show that combining dynamic code generation and runtime adaptation,
can give a 56% speedup on memory allocator’s allocation and release operations.
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1. INTRODUCTION
Because of power and area constraints, memory organizations of embedded systems
are often rather different than those of general purpose systems. In contrast with
conventional memory hierarchy with multiple cache levels, embedded systems often
contain explicitly addressable memories (scratchpads) that can be distributed, shared
or tightly coupled memories [Banakar et al. 2002; STMicroelectronics and CEA 2010].
Moreover, difficulties associated with explicit memory addressing are often increased
by the absence of address virtualization (MMU-less systems). As a consequence, man-
aging fragmented, heterogeneous memories of embedded system is often a strong issue
for system and application developers [Banakar et al. 2002; McIlroy et al. 2008].
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Fig. 1. Schematics of Doug Lea’s dlmalloc data structures.

Parallel applications, due to the out-of-order nature of their execution can take ad-
vantage of efficient dynamic memory allocation for communications between tasks.
Thus, dynamic memory allocation may be critical for performances even in embedded
systems where software developers sometimes prefer spending additional efforts to
explicitly handle memory management. However, memory allocators, even those espe-
cially designed for embedded systems (e.g. Newlib [community 2010]), are not adapted
to fragmented memories, because they all assume a unique heap mapped in a con-
tiguous address range. Thus, on one hand, memory allocators for embedded systems
need to be much more flexible than memory allocators of general purpose or high per-
formance computing systems. On the other hand, embedded systems software cannot
afford loosing cycles in flexible, generic and unoptimized runtime functions.

This paper presents an embedded system memory allocator, leveraging dynamic code
generation to enhance its ability to handle complex memory organization while keep-
ing, and even increasing its performances. Section 2 presents the general principles
of memory allocators, and the proposed implementation of an optimized memory allo-
cator for embedded systems. Section 3 provides details on the tools and the platform
used for experimentations. Section 4 discusses the behavior and performances of our
proposed memory allocator. Finally, Section 5 and Section 6, present an overview of
related works, and a summary of key advantages and limitations of our approach.

2. MEMORY ALLOCATORS FOR EMBEDDED SYSTEMS
2.1. General purpose memory allocators
General purpose memory allocators all share a common ground of software technolo-
gies. All GP-memory allocators manage a data structure keeping track of available
chunks of memory (free chunks). For all memory allocators, the map of free chunks is
always implemented using associative arrays; array of linked lists in [Lea 2000; com-
munity 2010] red-black tree, or treaps-based maps in [Evans 2006]. Those associative
arrays store free chunks of memory according to their size.

Figure 1 shows the data structures involved in the classic memory allocator of Doug
Lea [Lea 2000] (called dlmalloc, base of Newlib and GlibC allocators). As in many
other general purpose memory allocators, Lea’s dlmalloc data structures general heap
information (base address, size) along with the map of heap’s free fragments (called
free memory chunks). The heap free chunks are looked up using an associative array
implemented using a classic hash table: array of linked-lists. Each linked-list corre-
sponds to a range of free chunk sizes and is sorted according to the size, in ascending
order. Following Doug Lea’s conventions, the hash array items containing linked-list
of free chunks are called bins (or recycle bins). Bins are the place where the memory
allocator looks for free chunks, during a malloc operation, and store them back, during
a free operation. The function that associates a bin to an input size is called the bin
hash function.
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The malloc operation scans the recycle bins for a big enough free chunk of memory.
The scan operation starts with the bin potentially containing a free memory chunk of
size immediately greater or equal to the requested size (using the bin hash function).
Then, the scan continues with larger bins if no free memory chunk has been found
previously. In each bin, chunks are ordered according to their size, so that the allocator
always returns the smallest free chunk immediately greater or equal to requested size.
If the elected free chunk is larger than the requested size, the chunk is split and the
remainder is re-inserted to the recycle bins.

Another concern of memory allocators is to minimize heap fragmentation. In order
to do that, the dlmalloc allocator uses a minimal and yet very efficient technique, co-
alescing chunks with neighboring free chunks during free operations. This is possible
because allocated and free chunks contain information, in their header, giving the ex-
act address of previous and next heap chunks (with respect to their physical address).
This technique minimizes efficiently fragmentation as long as allocated memory is re-
leased reasonably frequently (no memory leaks, and few long life memory allocations).

Finally, general purpose memory allocators often assume that memory heaps are
large and contiguous. This assumption is absolutely correct in general purpose com-
puting systems where heaps are uniquely associated with processes, and where the
memory management units perform logical to physical translations so that process
memory spaces are large and flat.

2.2. Embedded system constraints
In embedded systems, computing architectures differ significantly from general pur-
pose ones. Those differences are mainly due to different objectives and constraints;
embedded systems cannot afford the power consumption and silicon area assumed by
general purpose architectures. As a direct consequence, embedded systems use simpler
hardware designs often leveraging a lightly higher effort from the developer.

Memory sub-systems, in embedded systems are often less transparent than in gen-
eral purpose computer architectures. Caches are removed, in favor of explicitly ad-
dressable Tightly Couple Memories (TCM). In order to deliver high performance, those
TCMs are distributed amongst the computing resources of the embedded system ar-
chitectures. Every computing core is associated to a local TCM or scratchpad where
it can store frequently used data. Multiple cores accessing shared data can in turn
have common scratchpads, normally delivering lower performances because of longer
communications and multiple access ports. We observe in many embedded system ar-
chitectures [STMicroelectronics and CEA 2010] that memory organizations converge
toward hierarchic layouts. Nevertheless, unlike in general purpose architectures, hier-
archic memories are TCMs (not caches), leaving the developer responsible for explicit
data management and placement (software caching).

In a split memory organization, memory allocation is done on a per-scratchpad ba-
sis [McIlroy et al. 2008]. Because different scratchpads have different access costs and
some scratchpads are even not accessible from all computing resources of the chip,
the uniform heap concept of general purpose system is no longer adaptable. Most of
the time, one instance of memory allocator is associated to each scratchpad of memory
architecture. Since scratchpads have different sizes and different usages (in term of
data lifetime, and memory allocation grain), those memory allocators must be flexible
to adapt to variable-size scratchpads and specific usages.

2.3. Software architecture of a flexible memory allocator
In order to deal with the constraints of embedded systems, memory allocators need to
be able to manage multiple heaps distributed in different memory of different sizes.
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A dlmalloc-based memory allocator (the one used in our experimentations) needs two
modifications to provide this ability.

First, the memory allocator should be multi-instantiable to address multiple heaps.
This implies using an object-oriented approach, encapsulating allocator’s global vari-
ables (heap bounds, recycle bins) in a data structure that can be instantiated multi-
ple times. This data structure has to be passed to each allocator function so that the
function knows the particular instance of memory allocator it is dealing with. The ad-
ditional pointer indirection required to parameterize the allocator instance has hardly
any impact on performance since the compiler often manages to keep the allocators’
instance address in a dedicated register.

Another important constraint is the ability to manage heaps of different sizes. The
original dlmalloc is designed for large heaps, thus, its number of recycle bins (hash
table width) is large (127 bins). This hash table is completely over-dimensioned for
heaps of few kilobytes since a 127-bins structure consumes more than 2KB of memory.
The second modification brought to the dlmalloc allocator consists in making the free
chunk hash table’s implementation configurable. This flexibility is provided by having
a variable number of recycle bins, and thus a variable bin hash function. Initially, the
bin hash function is a statically-compiled built-in function of the memory allocator. To
make this function configurable, a bin hash function pointer is added to the allocator’s
instance data, so that different memory allocators can have different bin hash func-
tions (and thus different bin counts). Multiple variations of the original bin hash func-
tions were written for different heap size (from few kilobytes to several megabytes).
The additional indirection of the bin hash function pointer has a cost, slightly higher
than instance data indirection, but less than 10 cycles on malloc or free operations,
which costs around 350 cycles.

With the modified software architecture of the memory allocator, it is possible to
provide a flexible memory allocator able to manage different heaps of different sizes.
The performance overhead of this flexibility is kept minimal, and we will see in next
section that performances can even be improved using dynamic code generation.

2.4. Increasing performances using dynamic code generation
To adapt memory allocation to multiple scratchpads with variable sizes and to different
runtime behavior of applications, an idea would be to have a large number of bin hash
functions and to choose the correct one at runtime. In practice, this number would be
too large to address efficiently all possible cases. The idea behind the memory allocator
proposed in this article is to start with a reasonable (but suboptimal) hash function,
to monitor runtime behavior of the memory allocator, and to regenerate periodically a
bin hash function using dynamic code generation.

The periodical regeneration of the bin hash function is done through a call to a func-
tion (called rehash) which collects information about the memory allocator behavior,
and then computes and generates a new optimized bin hash function. In our imple-
mentation, the rehash function is called periodically by the user, but nothing prevents
to make this call hidden behind malloc and free calls.

The information collected by the rehash function comes from the instrumentation of
malloc and free operations. These instrumentations try to capture the activity in each
bin (more detail on instrumentation will be given in later sections). Based on this bin
activity distribution, the rehash function tries to compute a new bin hash function that
would rebalance this bin activity. Once this optimization performed, a dynamic code
generator effectively writes the machine code for the corresponding bin hash function.
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3. EXPERIMENTAL FRAMEWORK
3.1. Code generation framework

3.1.1. DeGoal: building fast binary code generators. We have chosen to use DeGoal, a tool
designed at CEA-LIST to build fast and portable binary code generators. The design
around this tool is based on its ancestor named HPBCG, initially developed at Versailles
University [Charles and Sajjad 2009; Sajjad et al. 2009]: HPBCG was designed to gen-
erate program instructions at runtime in a very efficient way (the generation cost was
about tens of instruction clocks per instruction generated). Code generators were writ-
ten in an ASM-like language, and transformed to C language by an automatic source-
to-source translation. Code generators were architecture-dependent, but the porting of
code generators to a new architecture was made easy through architecture description
files. DeGoal tries to overcome the limitations of HPBCG by allowing the development
of architecture-independent code generators. It is composed of tools for the parsing
of the architecture description files, source-to-source tools for the translation of code
generators descriptions into standard C source files, and a set of architecture descrip-
tion files for various architectures. Architecture-dependent features can be introduced
both statically at compile time, and dynamically when the code generator effectively
produces the program instructions.
DeGoal allows to temparate in time and in architecture space the phases of code

generation and of code execution. The ability to separate along time code generation
and code execution is fundamental in the context of memory allocation: our aim is to
increase performance by using a memory allocator optimized according to the runtime
context, but at the same time we want to keep a control over the time at which the
code generation is performed, so that we will not impact the performance of critical
application components. The spatial separation of code generation and code execution
makes possible to run the code generator on one processor architecture, while the gen-
erated code is executed on a different processor architecture. This makes of DeGoal a
very interesting candidate for many-core platforms with heterogeneous processor ar-
chitectures. The target platform we have used, presented in section 3.2, is currently
composed of two kinds of processor architectures. We hence keep a very high flexibility
for the allocation of the code generation of the platform’s hardware resources.

3.1.2. Kernels and compilettes. The two categories of software components around which
our code generation technique is built are called kernels and compilettes:

Kernel. A kernel is a small portion of code, which is part of a larger application,
and which is most of the time under strong performance constraints; our technique
focuses on the optimization at runtime of these smalls parts of a larger application
in order to improve kernel’s performance. In the context of this paper, good perfor-
mance is understood as low execution time and/or low memory footprint.
Compilette. A code generator. A compilette is designed to generate the code of ker-
nels at runtime. It can be understood as a small compiler that is executed at ap-
plication’s runtime. We use the term compilette to underline the fact that due to
performance constraints this small runtime compiler does not embed all the op-
timization techniques usually carried out by a static compiler. The binary code of
a compilette is generated during the static compilation along with the rest of the
application.

3.1.3. Workflow of code generation. The building of an application using DeGoal is de-
tailed in figure 2 and explained below:

Writing the source code (application development time). This task is handled by the
application developer, and/or by high-level tools if any. Using DeGoal the source code
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Fig. 2. DeGoal workflow: from the writing of application’s source code to the execution of a kernel generated
at runtime

of compilettes is written in specialized .cdg. files, while the rest of the application
software components are written in C source code. .cdg files combine standard C lan-
guage and a dedicated high-level ASM language, which allows for the description of
code generators in an architecture-independent way.

Generation of C source files (rewrite time). This step consists in a source-to-source
transformation: the .cdg source files mixing high-level ASM instructions and standard
C are translated into standard C source files by degoaltoc, which is one of DeGoal tools.
At this phase architecture-dependent features can be introduced in the C source files
generated, for example register allocation and vectorization support.

Compilation of the application (static compilation time). The source code of the appli-
cation now consists in a set of standard C source files, including the source code of the
compilettes. The binary code of the application is produced by a standard C compiler.
This step is the same as in the development of a standard C application.

Generation of kernel’s binary code (runtime). At runtime, the compilette generates
the binary code of the kernel(s) to optimize. This task can be executed on a proces-
sor that is different of the processor that will later run the kernel. Furthermore, the
compilette’s processor and the kernel’s one do not necessarily need to have the same
architecture. A compilette can be run several times, for example as soon as the ker-
nel needs to be regenerated for new data to process. We have detailed on figure 2 two
particular inputs of the compilette: data and hardware description. The originality of
our approach indeed relies in the generation of a binary code optimized for a particu-
lar set of application data. At the same time, the code generation is able to introduce
hardware-specific features, for example specialized instructions.

Kernel execution (runtime). The program memory buffer generated by the compilette
is run on the target processor (not shown in figure 2).

3.2. Target architecture
3.2.1. Platform 2012. In this article, we target a STMicroelectronics embedded plat-

form called Platform 2012 [STMicroelectronics and CEA 2010] (P2012). It is a large
scale, scalable multi-core fabric, under development by STMicroelectronics and CEA.
This many-core architecture is modular through its cluster-based structure. The fabric
is composed of multiple clusters connected through an asynchronous network-on-chip
allowing each cluster to have its own voltage and frequency domain. Each P2012 clus-
ter aggregates a multi-core computing engine, called ENCore. The ENCore cluster,
shown in Figure 3 includes a number of processing elements (PEs) varying from 1 to
16. Each PE is built with a configurable and extensible processor from STMicroelec-
tronics called STxP70-4, described in section 3.2.2.
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Fig. 3. Architecture overview of the P2012 computing fabric.

The P2012 memory organization follows the hierarchic architecture of the fabric it-
self. The fabric itself is associated to an on-chip DDR3 memory called the external
memory. The ENCore cluster comes with a 128KB multi-bank memory shared by the
16 cores of the cluster. Finally each computing core has local cache memories for in-
structions and data (some declination of the P2012 architecture replace the data cache
by a 32Kb tightly coupled memory).

A lightweight runtime system, called the “P2012 simple runtime” has been devel-
oped for the P2012 platform to bring to developers necessary functions to load appli-
cations, manage threads, communications and synchronizations on the platform. The
P2012 runtime provides a dlmalloc-based memory allocator (the one used in this arti-
cle). Experiments of this article focus on allocation in the cluster shared memory.

3.2.2. Processing core: STxP70. The STxP70-4 processor is a 32-bit RISC core from
STMicroelectronics. It comes with a variable-length instruction encoding and a dual
VLIW architecture allowing two instructions to be issued and executed at each cycle.
The processor also provides guarded execution, with 4 guards registers, which allows
some optimizations that our code generator uses extensively.

The P2012 SDK is delivered with a full toolchain for compiling, debugging, profiling
and simulation in functional and cycle-accurate modes. In the context of this paper, our
experimental results are based on the cycle-accurate simulator of the STxP70 core.

3.3. Dynamic code generation in our memory allocator
The bin hash function associates a bin index to an input size. The bin index allows
accessing an array item holding a linked-list of free memory chunks. In our malloc im-
plementation bin indices correspond to descending inputs size. For example a bin hash
function of 3 bins covering ranges from 0 bytes to 4 kilobytes could be described has
{[0x100:0x1000) => 0, [0x10:0x100) => 1, [0x0:0x10) => 2}. Thus, the bin hash
function generator takes a list of input size ranges, along with a list of output bin in-
dices, and dynamically generates the code of the corresponding bin hash function using
a recursive algorithm described below.

3.3.1. Code generation of the hash function. The hash function code generator uses a re-
cursive dichotomy algorithm to build a binary comparison tree and to encode the cor-
responding machine code sequence. The pseudo-code of a simplified version of the hash
function code generator is given in figure 4.
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def gen_bin_hash( out_code, in_bounds ):
if len( in_bounds ) == 1:

out_code.gen_return( in_bounds.index )
jump = out_code.gen_compare_and_jump( in_bounds.middle )
gen_bin_hash( out_code, in_bounds.left )
jump.set_target( out_code )
gen_bin_hash( out_code, in_bounds.right )

Fig. 4. Pseudo-code of a simplified version of the hash function code generator

Fig. 5. Average execution time (in cycles) of all hash functions on two different datasets

The algorithms recursively divides the input bounds array to generate the neces-
sary return and compare and jump machine instructions. The actual code generator is
an optimized version of this pseudo-code that: 1/ leverages the VLIW architecture to
produce bundles of two parallel instructions and 2/ performs software pipelining on
comparisons, taking advantages of the 4 guard registers available in the STxP70-4.
The code generator produce a 127 bins hash function in about 40.000 cycles, which
corresponds to 37.5 host instructions per generated instructions.

3.3.2. Performance of generated hash functions. Figure 5 shows the average execution
time of three hash functions: the original hash function (original), a software con-
figurable hash function (variable) and our dynamically generated hash function
(generated). The original and variable functions were compiled using the maximum
optimization level of the compiler. Measurements were performed on a two large sets
of input values: a linear scan of all the possible input values (linear) and a random
sequence of input values (random).

We observe on both input data sets that our generated function performs as well
as the original function. The variable hash function is a configurable function which
computes the hash index using a dichotomy algorithm with a memory-stored array of
input size ranges. This version of the hash function is up to 4 times slower, which con-
firm that conventional software approach fails to balance flexibility and performance
in that case. Finally, we observe that all functions are hardly insensitive to the in-
put dataset, showing that the STxP70 static branch predictor, doesn’t request further
optimizations from our code generator.

4. MEMORY ALLOCATOR RUNTIME PERFORMANCES
We have shown, in previous sections, how the memory allocator was modified, using dy-
namic code generation, to allow runtime (re)configuration of its free chunk associative
array. The following sections describe how this configurability is used, in combination
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Fig. 6. Sample allocation graph and timeline of allocated buffers for one possible execution

with runtime monitoring, to dynamically adapt it to the effective behavior of memory
allocations.

4.1. Experimental setup for measuring memory allocation
In order to evaluate our memory allocator on a large set of memory allocation schemes,
we developed a synthetic random allocation benchmark generator. The generator uses
a graph allocation model that is able to reproduce the runtime behavior of parallel
execution model based on task-level parallelism [Frigo et al. 1998; Ojail et al. 2011;
Apple Inc 2010] (TLP). In these execution models, tasks are dynamically spawned in a
fork-join (diamond) fashion, and communication between tasks is done through shared
buffers. The shared buffers may be statically allocated at unique memory locations, but
dynamic allocation is often mandatory to limit the memory consumption.

Figure 6 shows the principle of the graph allocation model. Each graph vertex cor-
responds to a task that performs exactly one buffer allocation and potentially several
buffer releases. Graph edges correspond to transitions from one task to another. A
buffer allocated by one task is only released when all the “next” tasks are started. A
task buffer thus represents the communication between the task (producer) and the
consumers. The timeline on figure 6(b) illustrates a possible execution of the graph
model on figure 6(a), where on the X-axis tn corresponds to the starting time on the
task n, and the bold black lines on the figure represent memory buffer timelines.

Using this graph model, we were able to model existing applications along with a
large set of randomly generated graphs (with random allocation size for each vertex).
It allowed us to stress our memory allocator and to investigate monitoring and recon-
figuration strategies on a large set of memory allocation patterns.

4.2. Exploiting runtime effective behavior of memory allocation
We saw, in section that in Section 2.4 that our dlmalloc-based memory allocator pro-
vides a rehash function that allows optimizing the memory allocator, at runtime, based
on feedback of malloc and free instrumentation. Next sections discuss the details of
the instrumentation and runtime optimizations.

4.3. Adaptation algorithms
Memory allocator instrumentation. In order to be able to reconfigure the memory

allocator, and especially the size ranges associated with each bin, we need to define a
cost function (one per bin) that reflects the load of each bin. Then using this metric, we
need to adapt the hash function so the overall performance of the memory allocator is
improved. The idea behind configuring the hash function is that the more balanced the
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Fig. 7. Bin distribution (from lower to larger sizes) of free chunks injections

hash table is, the less operations will be performed on each bin: a malloc operation will
find the best bin with a minimal linked-list traversal and a free operation will perform
sorted insertion of the free memory chunk in short linked-list. Note that in the initial
memory allocator, linked-list manipulations of the free and malloc operations account
for 66% of the whole operations.

Several instrumentation techniques were tested to determine the cost function that
better reflects the activity of each bins. A good activity metric of each bins is neces-
sary so that the feedback is as effective as possible. We implemented counters, for each
bins, that counts: 1/ free memory chunk extraction during malloc operations, 2/mem-
ory chunk insertion during free operations, and 3/ linked-list iterations for both free
and malloc operations. The regeneration of the hash function succeeds in (re)balancing
all possible counter combination. Nevertheless, only the rehash function based on the
“free chunk insertions” counter effectively translates into improved performance. This
result comes from the fact that monitoring free chunk insertion is the best way to
measure in which bins free chunks effectively are. Finally, counters monitoring link
traversals have the potential to be more precise, but their runtime overhead always
degrades performances.

Bin load balancing. The algorithm responsible for load balancing the hash table is
implemented in the rehash function. This algorithm follows a simple linear redistribu-
tion of bins’ intervals according to the cost function (free chunk insertion) associated
to each bins. Figure 7 shows the distribution of free chunks insertions in each bins.

Figure 7(a), shows the distribution before regeneration of the bin hash function (call
to rehash) and Figure 7(b) shows the equivalent bin distribution after a call to rehash.
Both bin distributions are observed after the execution of the same synthetic bench-
mark (see section 4.1) generating 4096 malloc calls (and 4096 free calls). On this spe-
cific benchmark this load balancing operation ends in a 1% performance improvement.
We will see in next section that a single call to the rehash function can sometimes
degrade performances, but performances are hardly always improved after the second
call (always after the third).

4.4. Runtime adaptation of the memory allocator
To measure the performance improvment provided by the optimized memory allocator,
we used the synthetic allocation benchmarks (section 4.1). The synthetic benchmarks
are run several times interleaved with optimization steps (calls to rehash). Average
execution times of malloc+free are collected at each iteration (before rehash calls).
To investigate the memory allocator’s sensitivity to different allocation patterns, we
randomy generated 1.000 different synthetic benchmarks and measured worst cases,
best cases and average performance. Figure 8 shows the results of the experimenta-
tions. The X-axis follows the successive optimization steps (iterations). The 0 value
corresponds to the initial state, before any call to rehash. The Y-axis reveals the
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Fig. 8. Average speedup of malloc+free operations after successive iterations of the rehash optimization.
Speedup are given according to the initial execution time (before the first call to rehash).

speedup provided by each call to rehash on average malloc+free execution time. Ini-
tially,(malloc+free operations have an average execution time of about 680 cycles).
Results show the dynamic adaptation of the memory allocator to the runtime alloca-
tion behavior of the benchmark. The memory allocator is hardly always more efficient,
than initially, after 3 calls to the rehash operations. After 9 calls, an average speedup
of 35% and a maximum speedup of 56% is observed on malloc and free calls.

5. RELATED WORK
There is an extensive amount of literature about dynamic compilation, mainly related
to Just-In-Time compilers (JITs), which are mainly used to accelerate interpreted lan-
guages [Aycock 2003], but also native machine code [Bala et al. 2000]. JITs dynam-
ically select the parts of the program to optimize without a priori knowledge on the
input code. This usually means a large footprint and a significant performance over-
head. in order to target embedded systems, some research works have tried to tackle
these limitations: memory footprint can be reduced to a few hundreds of KB [Gal et al.
2006], but the binary code produced is often of lower quality because of the smaller
amount of optimizing intelligence embedded in the JIT compiler [Shaylor 2002].

On the contrary our approach is based on the optimization of code regions with per-
formance constraints that are a priori known. It then becomes possible to design an
ad hoc small specialized compiler, embedding low level optimization techniques and
able to exploit specialized instructions of the target processor. The compromise is not
anymore on the quality of the code produced, but on the fact that only selected parts
of the application will be generated at runtime.

The approach chosen in DeGoal is similar to partial evaluation techniques [Consel
and Noël 1996], where the aim is to exploit runtime context information to produce
code of better quality as compared to the output of a static compiler. In partial evalu-
ation the aim is to generate dynamically the binary code in a minimal number of op-
erations: the main techniques used are: selecting code templates, filling pre-compiled
binary code with runtime values and relocating jump addresses. Partial evaluation
however is not able to exploit specialized instructions of the target processor, which
on the contrary DeGoal is able to do at the expense of a lightly higher code generation
cost [Brifault and Charles 2004; Sajjad et al. 2009].

To our knowledge, no work on memory allocator optimization leverages dynamic
code generation nor JIT compilation. However, memory allocator optimizations are
mainly based on improvement of free memory chunk storage [Berger et al. 2002; Evans
2006; McIlroy et al. 2008]. Thus, our memory allocator can be thought as the combina-
tion of free chunk storage optimization and runtime optimization with code generation.
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6. SUMMARY
This article presents a new memory allocator design optimized for embedded systems.
This memory allocator leverages runtime monitoring and dynamic code generation
to improve (de)allocation functions. The user, by periodically calling an optimization
function (rehash function), can improve performances of malloc and free functions by
up to 56%, after 9 calls to the rehash function.

Future studies sill focus on improving our solution to increase the convergence speed
of the rehash function. Also, we plan to release the user from explicitly calling this
function and hide the rehash call behind malloc and free calls. And finally, we will
investigate changing the number of bins at runtime.
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